A new cohomology class on the moduli space of curves

IF 1.7 1区 数学 Q1 MATHEMATICS
Paul Norbury
{"title":"A new cohomology class on the moduli space of curves","authors":"Paul Norbury","doi":"10.2140/gt.2023.27.2695","DOIUrl":null,"url":null,"abstract":"We define a collection of cohomology classes $\\Theta_{g,n}\\in H^{4g-4+2n}(\\overline{\\cal M}_{g,n})$ for $2g-2+n>0$ that restrict naturally to boundary divisors. We prove that a generating function for the intersection numbers $\\int_{\\overline{\\cal M}_{g,n}}\\Theta_{g,n}\\prod_{i=1}^n\\psi_i^{m_i}$ is a tau function of the KdV hierarchy. This is analogous to the theorem conjectured by Witten and proven by Kontsevich that a generating function for the intersection numbers $\\int_{\\overline{\\cal M}_{g,n}}\\prod_{i=1}^n\\psi_i^{m_i}$ is a tau function of the KdV hierarchy.","PeriodicalId":49200,"journal":{"name":"Geometry & Topology","volume":"98 1","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry & Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/gt.2023.27.2695","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 38

Abstract

We define a collection of cohomology classes $\Theta_{g,n}\in H^{4g-4+2n}(\overline{\cal M}_{g,n})$ for $2g-2+n>0$ that restrict naturally to boundary divisors. We prove that a generating function for the intersection numbers $\int_{\overline{\cal M}_{g,n}}\Theta_{g,n}\prod_{i=1}^n\psi_i^{m_i}$ is a tau function of the KdV hierarchy. This is analogous to the theorem conjectured by Witten and proven by Kontsevich that a generating function for the intersection numbers $\int_{\overline{\cal M}_{g,n}}\prod_{i=1}^n\psi_i^{m_i}$ is a tau function of the KdV hierarchy.
曲线模空间上的一个新的上同调类
我们为$2g-2+n>0$定义了一组上同调类$\Theta_{g,n}\in H^{4g-4+2n}(\overline{\cal M}_{g,n})$,它们自然地限制为边界除数。我们证明了相交数$\int_{\overline{\cal M}_{g,n}}\Theta_{g,n}\prod_{i=1}^n\psi_i^{m_i}$的生成函数是KdV层次的tau函数。这类似于Witten猜想并由Kontsevich证明的定理,即相交数$\int_{\overline{\cal M}_{g,n}}\prod_{i=1}^n\psi_i^{m_i}$的生成函数是KdV层次的tau函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geometry & Topology
Geometry & Topology MATHEMATICS-
CiteScore
3.00
自引率
5.00%
发文量
34
审稿时长
>12 weeks
期刊介绍: Geometry and Topology is a fully refereed journal covering all of geometry and topology, broadly understood. G&T is published in electronic and print formats by Mathematical Sciences Publishers. The purpose of Geometry & Topology is the advancement of mathematics. Editors evaluate submitted papers strictly on the basis of scientific merit, without regard to authors" nationality, country of residence, institutional affiliation, sex, ethnic origin, or political views.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信