{"title":"An optimal transport-based characterization of convex order","authors":"Johannes Wiesel, Erica Zhang","doi":"10.1515/demo-2023-0102","DOIUrl":null,"url":null,"abstract":"Abstract For probability measures <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>μ</m:mi> <m:mo>,</m:mo> <m:mi>ν</m:mi> </m:math> \\mu ,\\nu , and <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>ρ</m:mi> </m:math> \\rho , define the cost functionals <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"> <m:mi>C</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>μ</m:mi> <m:mo>,</m:mo> <m:mi>ρ</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>≔</m:mo> <m:munder> <m:mrow> <m:mi>sup</m:mi> </m:mrow> <m:mrow> <m:mi>π</m:mi> <m:mo>∈</m:mo> <m:mi mathvariant=\"normal\">Π</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>μ</m:mi> <m:mo>,</m:mo> <m:mi>ρ</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> </m:munder> <m:mo>∫</m:mo> <m:mrow> <m:mo>⟨</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>y</m:mi> </m:mrow> <m:mo>⟩</m:mo> </m:mrow> <m:mi>π</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi mathvariant=\"normal\">d</m:mi> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi mathvariant=\"normal\">d</m:mi> <m:mi>y</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mspace width=\"1.0em\" /> <m:mi mathvariant=\"normal\">and</m:mi> <m:mspace width=\"1em\" /> <m:mi>C</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>ν</m:mi> <m:mo>,</m:mo> <m:mi>ρ</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>≔</m:mo> <m:munder> <m:mrow> <m:mi>sup</m:mi> </m:mrow> <m:mrow> <m:mi>π</m:mi> <m:mo>∈</m:mo> <m:mi mathvariant=\"normal\">Π</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>ν</m:mi> <m:mo>,</m:mo> <m:mi>ρ</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> </m:munder> <m:mo>∫</m:mo> <m:mrow> <m:mo>⟨</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>y</m:mi> </m:mrow> <m:mo>⟩</m:mo> </m:mrow> <m:mi>π</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi mathvariant=\"normal\">d</m:mi> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi mathvariant=\"normal\">d</m:mi> <m:mi>y</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>,</m:mo> </m:math> C\\left(\\mu ,\\rho ):= \\mathop{\\sup }\\limits_{\\pi \\in \\Pi \\left(\\mu ,\\rho )}\\int \\langle x,y\\rangle \\pi \\left({\\rm{d}}x,{\\rm{d}}y)\\hspace{1.0em}{\\rm{and}}\\hspace{1em}C\\left(\\nu ,\\rho ):= \\mathop{\\sup }\\limits_{\\pi \\in \\Pi \\left(\\nu ,\\rho )}\\int \\langle x,y\\rangle \\pi \\left({\\rm{d}}x,{\\rm{d}}y), where <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo>⟨</m:mo> <m:mrow> <m:mo>⋅</m:mo> <m:mo>,</m:mo> <m:mo>⋅</m:mo> </m:mrow> <m:mo>⟩</m:mo> </m:mrow> </m:math> \\langle \\cdot ,\\cdot \\rangle denotes the scalar product and <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"normal\">Π</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mo>⋅</m:mo> <m:mo>,</m:mo> <m:mo>⋅</m:mo> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> \\Pi \\left(\\cdot ,\\cdot ) is the set of couplings. We show that two probability measures <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>μ</m:mi> </m:math> \\mu and <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>ν</m:mi> </m:math> \\nu on <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mi>d</m:mi> </m:mrow> </m:msup> </m:math> {{\\mathbb{R}}}^{d} with finite first moments are in convex order (i.e., <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>μ</m:mi> <m:msub> <m:mrow> <m:mo>≼</m:mo> </m:mrow> <m:mrow> <m:mi>c</m:mi> </m:mrow> </m:msub> <m:mi>ν</m:mi> </m:math> \\mu {\\preccurlyeq }_{c}\\nu ) iff <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>C</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>μ</m:mi> <m:mo>,</m:mo> <m:mi>ρ</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>≤</m:mo> <m:mi>C</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>ν</m:mi> <m:mo>,</m:mo> <m:mi>ρ</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> C\\left(\\mu ,\\rho )\\le C\\left(\\nu ,\\rho ) holds for all probability measures <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>ρ</m:mi> </m:math> \\rho on <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mi>d</m:mi> </m:mrow> </m:msup> </m:math> {{\\mathbb{R}}}^{d} with bounded support. This generalizes a result by Carlier. Our proof relies on a quantitative bound for the infimum of <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo>∫</m:mo> </m:mrow> <m:mi>f</m:mi> <m:mi mathvariant=\"normal\">d</m:mi> <m:mi>ν</m:mi> <m:mo>−</m:mo> <m:mrow> <m:mo>∫</m:mo> </m:mrow> <m:mi>f</m:mi> <m:mi mathvariant=\"normal\">d</m:mi> <m:mi>μ</m:mi> </m:math> \\int f{\\rm{d}}\\nu -\\int f{\\rm{d}}\\mu over all 1-Lipschitz functions <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>f</m:mi> </m:math> f , which is obtained through optimal transport (OT) duality and the characterization result of OT (couplings) by Rüschendorf, by Rachev, and by Brenier. Building on this result, we derive new proofs of well known one-dimensional characterizations of convex order. We also describe new computational methods for investigating convex order and applications to model-independent arbitrage strategies in mathematical finance.","PeriodicalId":43690,"journal":{"name":"Dependence Modeling","volume":"18 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dependence Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/demo-2023-0102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract For probability measures μ,ν \mu ,\nu , and ρ \rho , define the cost functionals C(μ,ρ)≔supπ∈Π(μ,ρ)∫⟨x,y⟩π(dx,dy)andC(ν,ρ)≔supπ∈Π(ν,ρ)∫⟨x,y⟩π(dx,dy), C\left(\mu ,\rho ):= \mathop{\sup }\limits_{\pi \in \Pi \left(\mu ,\rho )}\int \langle x,y\rangle \pi \left({\rm{d}}x,{\rm{d}}y)\hspace{1.0em}{\rm{and}}\hspace{1em}C\left(\nu ,\rho ):= \mathop{\sup }\limits_{\pi \in \Pi \left(\nu ,\rho )}\int \langle x,y\rangle \pi \left({\rm{d}}x,{\rm{d}}y), where ⟨⋅,⋅⟩ \langle \cdot ,\cdot \rangle denotes the scalar product and Π(⋅,⋅) \Pi \left(\cdot ,\cdot ) is the set of couplings. We show that two probability measures μ \mu and ν \nu on Rd {{\mathbb{R}}}^{d} with finite first moments are in convex order (i.e., μ≼cν \mu {\preccurlyeq }_{c}\nu ) iff C(μ,ρ)≤C(ν,ρ) C\left(\mu ,\rho )\le C\left(\nu ,\rho ) holds for all probability measures ρ \rho on Rd {{\mathbb{R}}}^{d} with bounded support. This generalizes a result by Carlier. Our proof relies on a quantitative bound for the infimum of ∫fdν−∫fdμ \int f{\rm{d}}\nu -\int f{\rm{d}}\mu over all 1-Lipschitz functions f f , which is obtained through optimal transport (OT) duality and the characterization result of OT (couplings) by Rüschendorf, by Rachev, and by Brenier. Building on this result, we derive new proofs of well known one-dimensional characterizations of convex order. We also describe new computational methods for investigating convex order and applications to model-independent arbitrage strategies in mathematical finance.
期刊介绍:
The journal Dependence Modeling aims at providing a medium for exchanging results and ideas in the area of multivariate dependence modeling. It is an open access fully peer-reviewed journal providing the readers with free, instant, and permanent access to all content worldwide. Dependence Modeling is listed by Web of Science (Emerging Sources Citation Index), Scopus, MathSciNet and Zentralblatt Math. The journal presents different types of articles: -"Research Articles" on fundamental theoretical aspects, as well as on significant applications in science, engineering, economics, finance, insurance and other fields. -"Review Articles" which present the existing literature on the specific topic from new perspectives. -"Interview articles" limited to two papers per year, covering interviews with milestone personalities in the field of Dependence Modeling. The journal topics include (but are not limited to): -Copula methods -Multivariate distributions -Estimation and goodness-of-fit tests -Measures of association -Quantitative risk management -Risk measures and stochastic orders -Time series -Environmental sciences -Computational methods and software -Extreme-value theory -Limit laws -Mass Transportations