Effect of truck and train loading on permanent deformation and fatigue cracking behavior of asphalt concrete in flexible pavement highway and asphaltic overlayment track
{"title":"Effect of truck and train loading on permanent deformation and fatigue cracking behavior of asphalt concrete in flexible pavement highway and asphaltic overlayment track","authors":"Dian M. Setiawan","doi":"10.1515/jmbm-2022-0303","DOIUrl":null,"url":null,"abstract":"Abstract This research investigated the largest magnitude of displacement and horizontal tensile strain in several critical locations within the asphalt concrete (AC) layer in both the flexible pavement highway (FPH) and asphaltic overlayment track (AOT) structure using the numerical modeling method. The role of the hauling loads, speed, and loading cycles of freight truck’s dumps and freight train’s wagons on the mechanical behavior of FPH and AOT in terms of the permanent deformation and fatigue cracking was examined. Furthermore, the performance of the FPH and AOT in terms of permanent deformation and fatigue cracking characteristics due to various magnitudes of hauling loads, speed, and loading cycles of freight truck’s dumps and freight train’s wagons was compared to determine the optimum infrastructure for the freight coal transportation, based on the hauling capacity as well as the magnitude of permanent deformation and the horizontal tensile strain of the AC layer. According to the findings of this study, it is suggested to choose the AOT structure with fourth or sixth loading systems to run the freight coal transportation with the highest magnitude of the hauling capacity of 360,000 tons, since it produces the minimum magnitude of the permanent deformation and fatigue cracking of the AC layer. Future research should be conducted to examine the potential and the characteristics of fatigue cracking due to the contact between the edge of the sleeper and the surface of the AC layer in AOT.","PeriodicalId":17354,"journal":{"name":"Journal of the Mechanical Behavior of Materials","volume":"6 1","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Mechanical Behavior of Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jmbm-2022-0303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract This research investigated the largest magnitude of displacement and horizontal tensile strain in several critical locations within the asphalt concrete (AC) layer in both the flexible pavement highway (FPH) and asphaltic overlayment track (AOT) structure using the numerical modeling method. The role of the hauling loads, speed, and loading cycles of freight truck’s dumps and freight train’s wagons on the mechanical behavior of FPH and AOT in terms of the permanent deformation and fatigue cracking was examined. Furthermore, the performance of the FPH and AOT in terms of permanent deformation and fatigue cracking characteristics due to various magnitudes of hauling loads, speed, and loading cycles of freight truck’s dumps and freight train’s wagons was compared to determine the optimum infrastructure for the freight coal transportation, based on the hauling capacity as well as the magnitude of permanent deformation and the horizontal tensile strain of the AC layer. According to the findings of this study, it is suggested to choose the AOT structure with fourth or sixth loading systems to run the freight coal transportation with the highest magnitude of the hauling capacity of 360,000 tons, since it produces the minimum magnitude of the permanent deformation and fatigue cracking of the AC layer. Future research should be conducted to examine the potential and the characteristics of fatigue cracking due to the contact between the edge of the sleeper and the surface of the AC layer in AOT.
期刊介绍:
The journal focuses on the micromechanics and nanomechanics of materials, the relationship between structure and mechanical properties, material instabilities and fracture, as well as size effects and length/time scale transitions. Articles on cutting edge theory, simulations and experiments – used as tools for revealing novel material properties and designing new devices for structural, thermo-chemo-mechanical, and opto-electro-mechanical applications – are encouraged. Synthesis/processing and related traditional mechanics/materials science themes are not within the scope of JMBM. The Editorial Board also organizes topical issues on emerging areas by invitation. Topics Metals and Alloys Ceramics and Glasses Soils and Geomaterials Concrete and Cementitious Materials Polymers and Composites Wood and Paper Elastomers and Biomaterials Liquid Crystals and Suspensions Electromagnetic and Optoelectronic Materials High-energy Density Storage Materials Monument Restoration and Cultural Heritage Preservation Materials Nanomaterials Complex and Emerging Materials.