Showkat Ahmad Lone, F. M. Allehiany, Sadia Anwar, Sana Shahab, Anwar Saeed, Sayed M. Eldin
{"title":"Investigating effects of Lorentz forces and convective heating on ternary hybrid nanofluid flow over a curved surface using homotopy analysis method","authors":"Showkat Ahmad Lone, F. M. Allehiany, Sadia Anwar, Sana Shahab, Anwar Saeed, Sayed M. Eldin","doi":"10.1515/ntrev-2023-0125","DOIUrl":null,"url":null,"abstract":"Abstract This work investigates the ternary hybrid nanofluid flow over an extending curved surface. The surface is impermeable and convective with hot working fluid water. Additionally, <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mrow> <m:mtext>TiO</m:mtext> </m:mrow> <m:mrow> <m:mtext>2</m:mtext> </m:mrow> </m:msub> </m:math> {\\text{TiO}}_{\\text{2}} , <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mrow> <m:mtext>CoFe</m:mtext> </m:mrow> <m:mrow> <m:mtext>2</m:mtext> </m:mrow> </m:msub> <m:msub> <m:mrow> <m:mtext>O</m:mtext> </m:mrow> <m:mrow> <m:mtext>4</m:mtext> </m:mrow> </m:msub> </m:math> {\\text{CoFe}}_{\\text{2}}{\\text{O}}_{\\text{4}} , and <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mtext>MgO</m:mtext> </m:math> \\text{MgO} nanoparticles are suspended with water to form a tri-hybrid nanofluid. The modeled equations are presented in the partial differential equation form and are then converted to ordinary differential equations with appropriate similarity variables. The semi-analytical solution is determined by homotopy analysis method. The impacts of magnetic field, Joule heating, chemical reaction, Brownian motion, and thermophoresis on flow profiles, Nusselt number, and Sherwood number are determined using tables and figures. The findings of this study demonstrated that as the magnetic parameter upsurges, the velocity distribution shrinkages, while the temperature distribution escalates. The greater curvature factor boots the velocity, thermal, and volumetric fraction distribution. The thermal and volumetric fraction distributions are the increasing functions of thermophoresis factor. The higher magnetic factor, Eckert number, and thermal Biot number increase the Nusselt number, while they reduce the higher Brownian and thermophoretic factors. The higher thermophoresis and Brownian motion factors heighten the Sherwood number. Furthermore, it has been noted that using nanofluid (TiO 2 -water) and hybrid nanoliquid (TiO 2 -CoFe 2 O 4 /water), the transfer of energy rate increases by up to 17.31 and 31.72% as the nanoparticle parameter increases from 0.01 to 0.04, respectively. However, the energy transference rate in case of ternary hybrid nanoliquid (TiO 2 -MgO-CoFe 2 O 4 /water) is 47.972%.","PeriodicalId":18839,"journal":{"name":"Nanotechnology Reviews","volume":"26 1","pages":"0"},"PeriodicalIF":6.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology Reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/ntrev-2023-0125","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract This work investigates the ternary hybrid nanofluid flow over an extending curved surface. The surface is impermeable and convective with hot working fluid water. Additionally, TiO2 {\text{TiO}}_{\text{2}} , CoFe2O4 {\text{CoFe}}_{\text{2}}{\text{O}}_{\text{4}} , and MgO \text{MgO} nanoparticles are suspended with water to form a tri-hybrid nanofluid. The modeled equations are presented in the partial differential equation form and are then converted to ordinary differential equations with appropriate similarity variables. The semi-analytical solution is determined by homotopy analysis method. The impacts of magnetic field, Joule heating, chemical reaction, Brownian motion, and thermophoresis on flow profiles, Nusselt number, and Sherwood number are determined using tables and figures. The findings of this study demonstrated that as the magnetic parameter upsurges, the velocity distribution shrinkages, while the temperature distribution escalates. The greater curvature factor boots the velocity, thermal, and volumetric fraction distribution. The thermal and volumetric fraction distributions are the increasing functions of thermophoresis factor. The higher magnetic factor, Eckert number, and thermal Biot number increase the Nusselt number, while they reduce the higher Brownian and thermophoretic factors. The higher thermophoresis and Brownian motion factors heighten the Sherwood number. Furthermore, it has been noted that using nanofluid (TiO 2 -water) and hybrid nanoliquid (TiO 2 -CoFe 2 O 4 /water), the transfer of energy rate increases by up to 17.31 and 31.72% as the nanoparticle parameter increases from 0.01 to 0.04, respectively. However, the energy transference rate in case of ternary hybrid nanoliquid (TiO 2 -MgO-CoFe 2 O 4 /water) is 47.972%.
期刊介绍:
The bimonthly journal Nanotechnology Reviews provides a platform for scientists and engineers of all involved disciplines to exchange important recent research on fundamental as well as applied aspects. While expert reviews provide a state of the art assessment on a specific topic, research highlight contributions present most recent and novel findings.
In addition to technical contributions, Nanotechnology Reviews publishes articles on implications of nanotechnology for society, environment, education, intellectual property, industry, and politics.