Photocatalytic Degradation of Polyethylene Plastics Using MgAl2O4 Nanoparticles Prepared by Solid State Method

Sajda .S. Affat, Saad Shahad Mohammed
{"title":"Photocatalytic Degradation of Polyethylene Plastics Using MgAl2O4 Nanoparticles Prepared by Solid State Method","authors":"Sajda .S. Affat, Saad Shahad Mohammed","doi":"10.23939/chcht17.03.503","DOIUrl":null,"url":null,"abstract":"In this study, MgAl2O4 nanoparticles with different calcination times were synthesized for photocatalytic applications. Different analyses techniques such as XRD, SEM, EDX, UV-visible, and FTIR were performed to investigate the structural, chemical, optical, and mor-phological properties of the synthesized nanoparticles. XRD analysis revealed the formation MgAl2O4 spinel structure. UV-Visible measurements indicate that MgAl2O4-2 nanoparticles had a narrower energy gap compared to MgAl2O4-1 and MgAl2O4-3. Results of SEM analysis revealed that the synthesized MgAl2O4 nanoparticles consist of small aggregated particles with (40-60 nm) particles size. EDX measurements con-firmed the formation of MgAl2O4 nanoparticles without any impurities. The photocatalytic performance was evaluated by the photodegradation of polyethylene plastics using MgAl2O4 nanoparticles under UV irradiation. The FT-IR measurements before and after the degradation of polyethylene plastics confirm the formation of new functional groups as a result of photodegradation processes.","PeriodicalId":9762,"journal":{"name":"Chemistry and Chemical Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry and Chemical Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23939/chcht17.03.503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, MgAl2O4 nanoparticles with different calcination times were synthesized for photocatalytic applications. Different analyses techniques such as XRD, SEM, EDX, UV-visible, and FTIR were performed to investigate the structural, chemical, optical, and mor-phological properties of the synthesized nanoparticles. XRD analysis revealed the formation MgAl2O4 spinel structure. UV-Visible measurements indicate that MgAl2O4-2 nanoparticles had a narrower energy gap compared to MgAl2O4-1 and MgAl2O4-3. Results of SEM analysis revealed that the synthesized MgAl2O4 nanoparticles consist of small aggregated particles with (40-60 nm) particles size. EDX measurements con-firmed the formation of MgAl2O4 nanoparticles without any impurities. The photocatalytic performance was evaluated by the photodegradation of polyethylene plastics using MgAl2O4 nanoparticles under UV irradiation. The FT-IR measurements before and after the degradation of polyethylene plastics confirm the formation of new functional groups as a result of photodegradation processes.
固体法制备MgAl2O4纳米颗粒光催化降解聚乙烯塑料
在本研究中,合成了不同煅烧时间的MgAl2O4纳米颗粒用于光催化。采用XRD、SEM、EDX、UV-visible和FTIR等不同的分析技术来研究合成的纳米颗粒的结构、化学、光学和形态特征。XRD分析显示形成的MgAl2O4尖晶石结构。紫外可见测量结果表明,MgAl2O4-2纳米粒子的能隙比MgAl2O4-1和MgAl2O4-3纳米粒子的能隙更小。SEM分析结果表明,合成的MgAl2O4纳米颗粒由粒径为(40 ~ 60 nm)的小颗粒聚集而成。EDX测量证实形成了没有任何杂质的MgAl2O4纳米颗粒。采用MgAl2O4纳米颗粒在紫外光照射下光降解聚乙烯塑料,考察了其光催化性能。聚乙烯塑料降解前后的FT-IR测量证实,由于光降解过程,形成了新的官能团。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信