Empirical Performance of CART, C5.0 and Random Forest Classification Algorithms for Decision Trees

Bissilimou Racidatou Orounla, Akoeugnigan Idelphonse Sode, Kolawole Valère Salako, Romain Glèlè Kakaï
{"title":"Empirical Performance of CART, C5.0 and Random Forest Classification Algorithms for Decision Trees","authors":"Bissilimou Racidatou Orounla, Akoeugnigan Idelphonse Sode, Kolawole Valère Salako, Romain Glèlè Kakaï","doi":"10.16929/ajas/2023.1399.274","DOIUrl":null,"url":null,"abstract":"This study compares the performance of <i>CART</i>, <i>C5.0</i> and Random Forest (<i>RF</i>) algorithms. 25 continuous predictors and 25 factors were simulated using a population size of 10,000. Based on this data, sample data were generated by varying the number of predictors, the proportion of categorical versus continuous predictors and the sample size. The performance of the tree algorithms increases with sample size and the number of variables, but for <i>RF</i>, it is highly greater than the one of <i>CART</i> and <i>C5.0</i>. Irrespective of the algorithms, the performance decreases when there are more categorical variables than continuous variables.","PeriodicalId":332314,"journal":{"name":"African Journal of Applied Statistics","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"African Journal of Applied Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.16929/ajas/2023.1399.274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study compares the performance of CART, C5.0 and Random Forest (RF) algorithms. 25 continuous predictors and 25 factors were simulated using a population size of 10,000. Based on this data, sample data were generated by varying the number of predictors, the proportion of categorical versus continuous predictors and the sample size. The performance of the tree algorithms increases with sample size and the number of variables, but for RF, it is highly greater than the one of CART and C5.0. Irrespective of the algorithms, the performance decreases when there are more categorical variables than continuous variables.
CART、C5.0和随机森林决策树分类算法的经验性能
本研究比较了<i>CART</i>和<i>C5.0</i>随机森林(<i>RF</i>)算法。25个连续预测因子和25个因素使用10,000个人口规模进行模拟。在此数据的基础上,通过改变预测因子的数量、分类预测因子与连续预测因子的比例以及样本量来生成样本数据。树算法的性能随着样本量和变量数量的增加而增加,但对于<i>RF</i>,树算法的性能远远大于<i>CART</i>和& lt; i> C5.0< / i>。无论哪种算法,当分类变量多于连续变量时,性能都会下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信