Long Memory, Time Trends, and the Degree of Persistence in Water Temperatures of Five European Rivers and Lakes

IF 1.2 Q4 WATER RESOURCES
Luis A. Gil-Alana, María Jesús González-Blanch, Carmen Lafuente, Tiina Nõges, Merja Pulkkanen
{"title":"Long Memory, Time Trends, and the Degree of Persistence in Water Temperatures of Five European Rivers and Lakes","authors":"Luis A. Gil-Alana, María Jesús González-Blanch, Carmen Lafuente, Tiina Nõges, Merja Pulkkanen","doi":"10.14796/jwmm.c505","DOIUrl":null,"url":null,"abstract":"This paper uses long memory and fractional integration techniques to analyze the presence of time trends in the water temperatures of three large European rivers (the Rhine at Lobith, the Danube at Wienna, the Meuse at Eijsden) and two lakes (Saimaa in Finland, and Võrtsjärv in Estonia). Long memory is a feature frequently observed in hydrological data, and it is important to consider it to appropriately estimate the potential trends in the data. The results indicate the existence of significant positive trends in all the five series examined, possibly as a consequence of global warming. Interestingly, once the time trends are taken into consideration, the degree of persistence substantially decreases in all cases and the long memory property in the data disappears.","PeriodicalId":43297,"journal":{"name":"Journal of Water Management Modeling","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water Management Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14796/jwmm.c505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

Abstract

This paper uses long memory and fractional integration techniques to analyze the presence of time trends in the water temperatures of three large European rivers (the Rhine at Lobith, the Danube at Wienna, the Meuse at Eijsden) and two lakes (Saimaa in Finland, and Võrtsjärv in Estonia). Long memory is a feature frequently observed in hydrological data, and it is important to consider it to appropriately estimate the potential trends in the data. The results indicate the existence of significant positive trends in all the five series examined, possibly as a consequence of global warming. Interestingly, once the time trends are taken into consideration, the degree of persistence substantially decreases in all cases and the long memory property in the data disappears.
欧洲五大河流和湖泊水温的长期记忆、时间趋势和持续程度
本文使用长记忆和分数积分技术来分析欧洲三大河流(洛比斯的莱茵河、维也纳的多瑙河、艾森登的默兹河)和两个湖泊(芬兰的塞马湖和爱沙尼亚的Võrtsjärv)水温的时间趋势。长记忆是水文数据中经常观察到的一个特征,考虑长记忆对于适当估计数据中的潜在趋势是很重要的。结果表明,在所有五个系列中都存在显著的正趋势,这可能是全球变暖的结果。有趣的是,一旦考虑到时间趋势,在所有情况下,持久性的程度都会大大降低,数据中的长内存属性也会消失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
8
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信