Identifying intermediates of oxygen reduction reaction on nitrogen-doped fullerene by high-resolution tip-enhanced Raman scattering

IF 1.2 4区 化学 Q4 PHYSICS, ATOMIC, MOLECULAR & CHEMICAL
Hai-Zhen Yu, Li Wang, Chuan-Kui Wang, Zhen Xie
{"title":"Identifying intermediates of oxygen reduction reaction on nitrogen-doped fullerene by high-resolution tip-enhanced Raman scattering","authors":"Hai-Zhen Yu, Li Wang, Chuan-Kui Wang, Zhen Xie","doi":"10.1063/1674-0068/cjcp2110215","DOIUrl":null,"url":null,"abstract":"The oxygen reduction reaction (ORR) by the nitrogen-doped fullerene (C59N) catalyst demonstrates an excellent activity in hydrogen fuel cells. However, the intermediates and catalytic active sites in pathways have not been directly characterized, hindering the understanding of the enhanced activity mechanism for ORR on C59N. By taking the inhomogeneity of spatially confined plasmon into account, we theoretically propose that the high-resolution tip-enhanced Raman scattering (TERS) can effectively identify different intermediate configurations in ORR on C59N. With the modulation of the focused spatially confined plasmon center position, vibrational modes that are directly related to site-specific O2-C59N interactions in ORR can be lighted up and then selected out by TERS spectra. Furthermore, the vibration-resolved TERS images for the selected modes of different intermediate configurations give spatial hot spot around the adsorption site, providing the in-situ details of catalytic active sites in ORR on C59N. These findings serve as a good reference for future high-resolution TERS experiments on probing catalytic systems at the molecular scale.","PeriodicalId":10036,"journal":{"name":"Chinese Journal of Chemical Physics","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Chemical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1674-0068/cjcp2110215","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The oxygen reduction reaction (ORR) by the nitrogen-doped fullerene (C59N) catalyst demonstrates an excellent activity in hydrogen fuel cells. However, the intermediates and catalytic active sites in pathways have not been directly characterized, hindering the understanding of the enhanced activity mechanism for ORR on C59N. By taking the inhomogeneity of spatially confined plasmon into account, we theoretically propose that the high-resolution tip-enhanced Raman scattering (TERS) can effectively identify different intermediate configurations in ORR on C59N. With the modulation of the focused spatially confined plasmon center position, vibrational modes that are directly related to site-specific O2-C59N interactions in ORR can be lighted up and then selected out by TERS spectra. Furthermore, the vibration-resolved TERS images for the selected modes of different intermediate configurations give spatial hot spot around the adsorption site, providing the in-situ details of catalytic active sites in ORR on C59N. These findings serve as a good reference for future high-resolution TERS experiments on probing catalytic systems at the molecular scale.
用高分辨率尖端增强拉曼散射识别氮掺杂富勒烯上氧还原反应的中间体
氮掺杂富勒烯(C59N)催化剂的氧还原反应(ORR)在氢燃料电池中表现出优异的活性。然而,通路中的中间体和催化活性位点尚未被直接表征,这阻碍了对ORR在C59N上增强活性机制的理解。考虑到空间限制等离子体的非均匀性,我们从理论上提出了高分辨率尖端增强拉曼散射(TERS)可以有效识别C59N上ORR中不同的中间构型。通过调制聚焦的空间限制等离子体中心位置,可以点亮ORR中与特定位点O2-C59N相互作用直接相关的振动模式,然后通过TERS光谱选择出这些模式。此外,不同中间构型选择模式的振动分辨TERS图像给出了吸附位点周围的空间热点,提供了C59N上ORR催化活性位点的原位细节。这些发现为今后在分子尺度上探测催化体系的高分辨率TERS实验提供了很好的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chinese Journal of Chemical Physics
Chinese Journal of Chemical Physics 物理-物理:原子、分子和化学物理
CiteScore
1.90
自引率
10.00%
发文量
2763
审稿时长
3 months
期刊介绍: Chinese Journal of Chemical Physics (CJCP) aims to bridge atomic and molecular level research in broad scope for disciplines in chemistry, physics, material science and life sciences, including the following: Theoretical Methods, Algorithms, Statistical and Quantum Chemistry Gas Phase Dynamics and Structure: Spectroscopy, Molecular Interactions, Scattering, Photochemistry Condensed Phase Dynamics, Structure, and Thermodynamics: Spectroscopy, Reactions, and Relaxation Processes Surfaces, Interfaces, Single Molecules, Materials and Nanosciences Polymers, Biopolymers, and Complex Systems Other related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信