Chunhui Shen, Qianyu Ouyang, Feibo Li, Zhipeng Liu, Longcheng Zhu, Yujie Zou, Qing Su, Tianhuan Yu, Yi Yi, Jianhong Hu, Cen Zheng, Bo Wen, Hanbang Zheng, Lunfan Xu, Sicheng Pan, Bin Wu, Xiao He, Ye Li, Jian Tan, Sheng Wang, Dan Pei, Wei Zhang, Feifei Li
{"title":"Lindorm TSDB: A Cloud-Native Time-Series Database for Large-Scale Monitoring Systems","authors":"Chunhui Shen, Qianyu Ouyang, Feibo Li, Zhipeng Liu, Longcheng Zhu, Yujie Zou, Qing Su, Tianhuan Yu, Yi Yi, Jianhong Hu, Cen Zheng, Bo Wen, Hanbang Zheng, Lunfan Xu, Sicheng Pan, Bin Wu, Xiao He, Ye Li, Jian Tan, Sheng Wang, Dan Pei, Wei Zhang, Feifei Li","doi":"10.14778/3611540.3611559","DOIUrl":null,"url":null,"abstract":"Internet services supported by large-scale distributed systems have become essential for our daily life. To ensure the stability and high quality of services, diverse metric data are constantly collected and managed in a time-series database to monitor the service status. However, when the number of metrics becomes massive, existing time-series databases are inefficient in handling high-rate data ingestion and queries hitting multiple metrics. Besides, they all lack the support of machine learning functions, which are crucial for sophisticated analysis of large-scale time series. In this paper, we present Lindorm TSDB, a distributed time-series database designed for handling monitoring metrics at scale. It sustains high write throughput and low query latency with massive active metrics. It also allows users to analyze data with anomaly detection and time series forecasting algorithms directly through SQL. Furthermore, Lindorm TSDB retains stable performance even during node scaling. We evaluate Lindorm TSDB under different data scales, and the results show that it outperforms two popular open-source time-series databases on both writing and query, while executing time-series machine learning tasks efficiently.","PeriodicalId":54220,"journal":{"name":"Proceedings of the Vldb Endowment","volume":"35 1","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Vldb Endowment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14778/3611540.3611559","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Internet services supported by large-scale distributed systems have become essential for our daily life. To ensure the stability and high quality of services, diverse metric data are constantly collected and managed in a time-series database to monitor the service status. However, when the number of metrics becomes massive, existing time-series databases are inefficient in handling high-rate data ingestion and queries hitting multiple metrics. Besides, they all lack the support of machine learning functions, which are crucial for sophisticated analysis of large-scale time series. In this paper, we present Lindorm TSDB, a distributed time-series database designed for handling monitoring metrics at scale. It sustains high write throughput and low query latency with massive active metrics. It also allows users to analyze data with anomaly detection and time series forecasting algorithms directly through SQL. Furthermore, Lindorm TSDB retains stable performance even during node scaling. We evaluate Lindorm TSDB under different data scales, and the results show that it outperforms two popular open-source time-series databases on both writing and query, while executing time-series machine learning tasks efficiently.
期刊介绍:
The Proceedings of the VLDB (PVLDB) welcomes original research papers on a broad range of research topics related to all aspects of data management, where systems issues play a significant role, such as data management system technology and information management infrastructures, including their very large scale of experimentation, novel architectures, and demanding applications as well as their underpinning theory. The scope of a submission for PVLDB is also described by the subject areas given below. Moreover, the scope of PVLDB is restricted to scientific areas that are covered by the combined expertise on the submission’s topic of the journal’s editorial board. Finally, the submission’s contributions should build on work already published in data management outlets, e.g., PVLDB, VLDBJ, ACM SIGMOD, IEEE ICDE, EDBT, ACM TODS, IEEE TKDE, and go beyond a syntactic citation.