An Invitation to Extension Domination

IF 0.6 3区 数学 Q2 LOGIC
Kyle Gannon, Jinhe Ye
{"title":"An Invitation to Extension Domination","authors":"Kyle Gannon, Jinhe Ye","doi":"10.1215/00294527-2023-0005","DOIUrl":null,"url":null,"abstract":"Motivated by the theory of domination for types, we introduce a notion of domination for Keisler measures called extension domination. We argue that this variant of domination behaves similarly to its typesetting counterpart. We prove that extension domination extends domination for types and that it forms a preorder on the space of global Keisler measures. We then explore some basic properties related to this notion (e.g., approximations by formulas, closure under localizations, convex combinations). We also prove a few preservation theorems and provide some explicit examples.","PeriodicalId":51259,"journal":{"name":"Notre Dame Journal of Formal Logic","volume":"34 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Notre Dame Journal of Formal Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1215/00294527-2023-0005","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

Abstract

Motivated by the theory of domination for types, we introduce a notion of domination for Keisler measures called extension domination. We argue that this variant of domination behaves similarly to its typesetting counterpart. We prove that extension domination extends domination for types and that it forms a preorder on the space of global Keisler measures. We then explore some basic properties related to this notion (e.g., approximations by formulas, closure under localizations, convex combinations). We also prove a few preservation theorems and provide some explicit examples.
对扩展统治的邀请
在类型支配理论的激励下,我们引入了Keisler测度的支配概念,称为可拓支配。我们认为,这种支配的变体行为类似于它的排版对应物。证明了可拓控制对类型的扩展控制,并在全局Keisler测度空间上形成了一个序。然后,我们探讨了与这个概念相关的一些基本性质(例如,公式近似,局部化下的闭包,凸组合)。我们还证明了一些守恒定理,并给出了一些明确的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
14.30%
发文量
14
审稿时长
>12 weeks
期刊介绍: The Notre Dame Journal of Formal Logic, founded in 1960, aims to publish high quality and original research papers in philosophical logic, mathematical logic, and related areas, including papers of compelling historical interest. The Journal is also willing to selectively publish expository articles on important current topics of interest as well as book reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信