FPGA Implementation of Classical Dynamic Neural Networks for Smooth and Nonsmooth Optimization Problems

IF 3 3区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Renfeng Xiao;Xing He;Tingwen Huang;Junzhi Yu
{"title":"FPGA Implementation of Classical Dynamic Neural Networks for Smooth and Nonsmooth Optimization Problems","authors":"Renfeng Xiao;Xing He;Tingwen Huang;Junzhi Yu","doi":"10.1109/TSUSC.2023.3325268","DOIUrl":null,"url":null,"abstract":"In this paper, a novel Field-Programmable-Gate-Array (FPGA) implementation framework based on Lagrange programming neural network (LPNN), projection neural network (PNN) and proximal projection neural network (PPNN) is proposed which can be used to solve smooth and nonsmooth optimization problems. First, Count Unit (CU) and Calculate Unit (CaU) are designed for smooth problems with equality constraints, and these units are used to simulate the iteration actions of neural network (NN) and form a feedback loop with other basic digital circuit operations. Then, the optimal solutions of optimization problems are mapped by the output waveforms. Second, the digital circuit structures of Path Select Unit (PSU), projection operator and proximal operator are further designed to process the box constraints and nonsmooth terms, respectively. Finally, the effectiveness and feasibility of the circuit are verified by three numerical examples on the Quartus II 13.0 sp1 platform with the Cyclone IV E series chip EP4CE10F17C8.","PeriodicalId":13268,"journal":{"name":"IEEE Transactions on Sustainable Computing","volume":"9 2","pages":"197-208"},"PeriodicalIF":3.0000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10286865/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a novel Field-Programmable-Gate-Array (FPGA) implementation framework based on Lagrange programming neural network (LPNN), projection neural network (PNN) and proximal projection neural network (PPNN) is proposed which can be used to solve smooth and nonsmooth optimization problems. First, Count Unit (CU) and Calculate Unit (CaU) are designed for smooth problems with equality constraints, and these units are used to simulate the iteration actions of neural network (NN) and form a feedback loop with other basic digital circuit operations. Then, the optimal solutions of optimization problems are mapped by the output waveforms. Second, the digital circuit structures of Path Select Unit (PSU), projection operator and proximal operator are further designed to process the box constraints and nonsmooth terms, respectively. Finally, the effectiveness and feasibility of the circuit are verified by three numerical examples on the Quartus II 13.0 sp1 platform with the Cyclone IV E series chip EP4CE10F17C8.
针对平滑和非平滑优化问题的经典动态神经网络的 FPGA 实现
本文提出了一种基于拉格朗日编程神经网络(LPNN)、投影神经网络(PNN)和近端投影神经网络(PPNN)的新型现场可编程门阵列(FPGA)实现框架,可用于解决平滑和非平滑优化问题。首先,针对具有相等约束条件的平滑问题设计了计数单元(CU)和计算单元(CaU),这些单元用于模拟神经网络(NN)的迭代动作,并与其他基本数字电路操作形成反馈回路。然后,通过输出波形映射出优化问题的最优解。其次,进一步设计了路径选择单元(PSU)、投影算子和近似算子的数字电路结构,以分别处理盒式约束和非光滑项。最后,在使用 Cyclone IV E 系列芯片 EP4CE10F17C8 的 Quartus II 13.0 sp1 平台上,通过三个数值实例验证了电路的有效性和可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Sustainable Computing
IEEE Transactions on Sustainable Computing Mathematics-Control and Optimization
CiteScore
7.70
自引率
2.60%
发文量
54
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信