Block codes on pomset metric

IF 0.5 Q3 MATHEMATICS
Atul Kumar Shriwastva, R. S. Selvaraj
{"title":"Block codes on pomset metric","authors":"Atul Kumar Shriwastva, R. S. Selvaraj","doi":"10.1142/s1793557123501711","DOIUrl":null,"url":null,"abstract":"Given a regular multiset [Formula: see text] on [Formula: see text], a partial order [Formula: see text] on [Formula: see text], and a label map [Formula: see text] defined by [Formula: see text] with [Formula: see text], we define a pomset block metric [Formula: see text] on the direct sum [Formula: see text] of [Formula: see text] based on the pomset [Formula: see text]. The pomset block metric extends the classical pomset metric introduced by Sudha and Selvaraj and generalizes the poset block metric introduced by Alves et al. over [Formula: see text]. The space [Formula: see text] is called the pomset block space and we determine the complete weight distribution of it. Further, [Formula: see text]-perfect pomset block codes for ideals with partial and full counts are described. Then, for block codes with chain pomset, the packing radius and Singleton bound are established. The relation between maximum distance separable (MDS) codes and [Formula: see text]-perfect codes for any ideal [Formula: see text] is investigated. Moreover, the duality theorem for an MDS pomset block code is established when all the blocks have the same size.","PeriodicalId":45737,"journal":{"name":"Asian-European Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian-European Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s1793557123501711","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Given a regular multiset [Formula: see text] on [Formula: see text], a partial order [Formula: see text] on [Formula: see text], and a label map [Formula: see text] defined by [Formula: see text] with [Formula: see text], we define a pomset block metric [Formula: see text] on the direct sum [Formula: see text] of [Formula: see text] based on the pomset [Formula: see text]. The pomset block metric extends the classical pomset metric introduced by Sudha and Selvaraj and generalizes the poset block metric introduced by Alves et al. over [Formula: see text]. The space [Formula: see text] is called the pomset block space and we determine the complete weight distribution of it. Further, [Formula: see text]-perfect pomset block codes for ideals with partial and full counts are described. Then, for block codes with chain pomset, the packing radius and Singleton bound are established. The relation between maximum distance separable (MDS) codes and [Formula: see text]-perfect codes for any ideal [Formula: see text] is investigated. Moreover, the duality theorem for an MDS pomset block code is established when all the blocks have the same size.
在pomset度量上的块代码
给定一个正则多集[公式:见文]上的[公式:见文],一个偏序[公式:见文]上的[公式:见文],以及一个由[公式:见文]与[公式:见文]定义的标签映射[公式:见文],我们在基于[公式:见文]的[公式:见文]的直和[公式:见文]上定义一个pomset块度量[公式:见文]。pomset块度量扩展了Sudha和Selvaraj引入的经典pomset度量,并推广了Alves等人在[公式:见文]上引入的poset块度量。这个空间[公式:见文]称为pomset块空间,我们确定它的完整权重分布。此外,[公式:见文本]-完美pomset块码的理想与部分和全部计数被描述。然后,对于带链边的分组码,建立了分组码的填充半径和单例界。研究了最大距离可分离码(MDS)与任意理想的完美码之间的关系。此外,在所有块大小相同的情况下,建立了MDS块集码的对偶定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
12.50%
发文量
169
期刊介绍: Asian-European Journal of Mathematics is an international journal which is devoted to original research in the field of pure and applied mathematics. The aim of the journal is to provide a medium by which new ideas can be discussed among researchers from diverse fields in mathematics. It publishes high quality research papers in the fields of contemporary pure and applied mathematics with a broad range of topics including algebra, analysis, topology, geometry, functional analysis, number theory, differential equations, operational research, combinatorics, theoretical statistics and probability, theoretical computer science and logic. Although the journal focuses on the original research articles, it also welcomes survey articles and short notes. All papers will be peer-reviewed within approximately four months.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信