Demonstration of SPARQL ML : An Interfacing Language for Supporting Graph Machine Learning for RDF Graphs

IF 2.6 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Hussein Abdallah, Waleed Afandi, Essam Mansour
{"title":"Demonstration of SPARQL <sup> <i>ML</i> </sup> : An Interfacing Language for Supporting Graph Machine Learning for RDF Graphs","authors":"Hussein Abdallah, Waleed Afandi, Essam Mansour","doi":"10.14778/3611540.3611599","DOIUrl":null,"url":null,"abstract":"This demo paper presents KGNet, a graph machine learning-enabled RDF engine. KGNet integrates graph machine learning (GML) models with existing RDF engines as query operators to support node classification and link prediction tasks. For easy integration, KGNet extends the SPARQL language with user-defined predicates to support the GML operators. We refer to this extension as SPARQL ML query. Our SPARQL ML query optimizer is in charge of optimizing the selection of the near-optimal GML models. The development of KGNet poses research opportunities in various areas spanning KG management. In the paper, we demonstrate the ease of integration between the RDF engines and GML models through the SPARQL ML inference query language. We present several real use cases of different GML tasks on real KGs. Using KGNet, users do not need to learn a new scripting language or have a deep understanding of GML methods. The audience will experience KGNet with different KGs and GML models, as shown in our demo video and Colab notebook.","PeriodicalId":54220,"journal":{"name":"Proceedings of the Vldb Endowment","volume":"1 1","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Vldb Endowment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14778/3611540.3611599","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This demo paper presents KGNet, a graph machine learning-enabled RDF engine. KGNet integrates graph machine learning (GML) models with existing RDF engines as query operators to support node classification and link prediction tasks. For easy integration, KGNet extends the SPARQL language with user-defined predicates to support the GML operators. We refer to this extension as SPARQL ML query. Our SPARQL ML query optimizer is in charge of optimizing the selection of the near-optimal GML models. The development of KGNet poses research opportunities in various areas spanning KG management. In the paper, we demonstrate the ease of integration between the RDF engines and GML models through the SPARQL ML inference query language. We present several real use cases of different GML tasks on real KGs. Using KGNet, users do not need to learn a new scripting language or have a deep understanding of GML methods. The audience will experience KGNet with different KGs and GML models, as shown in our demo video and Colab notebook.
SPARQL ML的演示:一种支持RDF图的图机器学习的接口语言
这篇演示论文介绍了KGNet,一个支持图机器学习的RDF引擎。KGNet将图机器学习(GML)模型与现有RDF引擎集成为查询操作符,以支持节点分类和链接预测任务。为了便于集成,KGNet使用用户定义的谓词扩展了SPARQL语言,以支持GML操作符。我们把这个扩展称为SPARQL ML查询。我们的SPARQL ML查询优化器负责优化接近最优的GML模型的选择。KGNet的发展为跨越KG管理的各个领域提供了研究机会。在本文中,我们通过SPARQL ML推理查询语言演示了RDF引擎和GML模型之间集成的便利性。使用KGNet,用户不需要学习新的脚本语言,也不需要对GML方法有深入的了解。正如我们的演示视频和Colab笔记本所示,观众将体验不同kg和GML模型的KGNet。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Proceedings of the Vldb Endowment
Proceedings of the Vldb Endowment Computer Science-General Computer Science
CiteScore
7.70
自引率
0.00%
发文量
95
期刊介绍: The Proceedings of the VLDB (PVLDB) welcomes original research papers on a broad range of research topics related to all aspects of data management, where systems issues play a significant role, such as data management system technology and information management infrastructures, including their very large scale of experimentation, novel architectures, and demanding applications as well as their underpinning theory. The scope of a submission for PVLDB is also described by the subject areas given below. Moreover, the scope of PVLDB is restricted to scientific areas that are covered by the combined expertise on the submission’s topic of the journal’s editorial board. Finally, the submission’s contributions should build on work already published in data management outlets, e.g., PVLDB, VLDBJ, ACM SIGMOD, IEEE ICDE, EDBT, ACM TODS, IEEE TKDE, and go beyond a syntactic citation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信