{"title":"Lynx: A Graph Query Framework for Multiple Heterogeneous Data Sources","authors":"Zhihong Shen, Chuan Hu, Zihao Zhao","doi":"10.14778/3611540.3611587","DOIUrl":null,"url":null,"abstract":"Graph model are increasingly popular among modern applications for its ability to model complex relationships between entities. Users tend to query the data as a graph with graph operations (e.g., graph navigation and exploration). However, a large fraction of the data resides in relational databases or other storage systems. Challenges arise in uniformly querying multiple heterogeneous data sources as a graph. Traditional solutions are limited by time-consuming data integration, expensive development effort, and incomplete query requirements. Thus, we developed Lynx, a general graph query framework, to simplify querying graph data by converting complex statements into basic graph operations. Instead of connecting directly to the data sources, Lynx retrieves data through user-implemented interfaces for those graph operations. We demonstrate Lynx's capabilities through real-world scenarios, showcasing Lynx's ability to process graph queries on multiple heterogeneous data sources and also to be used as a generic graph query engine development framework.","PeriodicalId":54220,"journal":{"name":"Proceedings of the Vldb Endowment","volume":"72 1","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Vldb Endowment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14778/3611540.3611587","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Graph model are increasingly popular among modern applications for its ability to model complex relationships between entities. Users tend to query the data as a graph with graph operations (e.g., graph navigation and exploration). However, a large fraction of the data resides in relational databases or other storage systems. Challenges arise in uniformly querying multiple heterogeneous data sources as a graph. Traditional solutions are limited by time-consuming data integration, expensive development effort, and incomplete query requirements. Thus, we developed Lynx, a general graph query framework, to simplify querying graph data by converting complex statements into basic graph operations. Instead of connecting directly to the data sources, Lynx retrieves data through user-implemented interfaces for those graph operations. We demonstrate Lynx's capabilities through real-world scenarios, showcasing Lynx's ability to process graph queries on multiple heterogeneous data sources and also to be used as a generic graph query engine development framework.
期刊介绍:
The Proceedings of the VLDB (PVLDB) welcomes original research papers on a broad range of research topics related to all aspects of data management, where systems issues play a significant role, such as data management system technology and information management infrastructures, including their very large scale of experimentation, novel architectures, and demanding applications as well as their underpinning theory. The scope of a submission for PVLDB is also described by the subject areas given below. Moreover, the scope of PVLDB is restricted to scientific areas that are covered by the combined expertise on the submission’s topic of the journal’s editorial board. Finally, the submission’s contributions should build on work already published in data management outlets, e.g., PVLDB, VLDBJ, ACM SIGMOD, IEEE ICDE, EDBT, ACM TODS, IEEE TKDE, and go beyond a syntactic citation.