Tingyu Wang, Yuchao Tao, Amir Gilad, Ashwin Machanavajjhala, Sudeepa Roy
{"title":"Explaining Differentially Private Query Results with DPXPlain","authors":"Tingyu Wang, Yuchao Tao, Amir Gilad, Ashwin Machanavajjhala, Sudeepa Roy","doi":"10.14778/3611540.3611596","DOIUrl":null,"url":null,"abstract":"Employing Differential Privacy (DP), the state-of-the-art privacy standard, to answer aggregate database queries poses new challenges for users to understand the trends and anomalies observed in the query results: Is the unexpected answer due to the data itself, or is it due to the extra noise that must be added to preserve DP? We propose to demonstrate DPXPlain, the first system for explaining group-by aggregate query answers with DP. DPXPlain allows users to compare values of two groups and receive a validity check, and further provides an explanation table with an interactive visualization, containing the approximately 'top-k' explanation predicates along with their relative influences and ranks in the form of confidence intervals, while guaranteeing DP in all steps.","PeriodicalId":54220,"journal":{"name":"Proceedings of the Vldb Endowment","volume":"36 1","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Vldb Endowment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14778/3611540.3611596","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Employing Differential Privacy (DP), the state-of-the-art privacy standard, to answer aggregate database queries poses new challenges for users to understand the trends and anomalies observed in the query results: Is the unexpected answer due to the data itself, or is it due to the extra noise that must be added to preserve DP? We propose to demonstrate DPXPlain, the first system for explaining group-by aggregate query answers with DP. DPXPlain allows users to compare values of two groups and receive a validity check, and further provides an explanation table with an interactive visualization, containing the approximately 'top-k' explanation predicates along with their relative influences and ranks in the form of confidence intervals, while guaranteeing DP in all steps.
期刊介绍:
The Proceedings of the VLDB (PVLDB) welcomes original research papers on a broad range of research topics related to all aspects of data management, where systems issues play a significant role, such as data management system technology and information management infrastructures, including their very large scale of experimentation, novel architectures, and demanding applications as well as their underpinning theory. The scope of a submission for PVLDB is also described by the subject areas given below. Moreover, the scope of PVLDB is restricted to scientific areas that are covered by the combined expertise on the submission’s topic of the journal’s editorial board. Finally, the submission’s contributions should build on work already published in data management outlets, e.g., PVLDB, VLDBJ, ACM SIGMOD, IEEE ICDE, EDBT, ACM TODS, IEEE TKDE, and go beyond a syntactic citation.