{"title":"Demonstration of OpenDBML, a Framework for Democratizing In-Database Machine Learning","authors":"Mahdi Ghorbani, Amir Shaikhha","doi":"10.14778/3611540.3611598","DOIUrl":null,"url":null,"abstract":"Machine learning over relational data has been used in several applications. The traditional approach of joining relations first and then training a model on the joined table is time-consuming and requires a significant amount of memory. Recent research has focused on in-database machine learning (in-DB ML) to address this issue; these methods train the models over relations without joining, resulting in a more efficient process. However, such systems have ad-hoc user interfaces and specific data formats, making them challenging to use. To address this problem, this paper presents OpenDBML, a framework for democratizing in-DB ML. OpenDBML offers a Python interface for multiple in-DB ML systems, a set of commonly used datasets, and the ability to add new datasets and in-DB ML systems via both Python and web interfaces. The paper also presents comprehensive demonstration scenarios to illustrate how to use OpenDBML effectively.","PeriodicalId":54220,"journal":{"name":"Proceedings of the Vldb Endowment","volume":"83 1","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Vldb Endowment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14778/3611540.3611598","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Machine learning over relational data has been used in several applications. The traditional approach of joining relations first and then training a model on the joined table is time-consuming and requires a significant amount of memory. Recent research has focused on in-database machine learning (in-DB ML) to address this issue; these methods train the models over relations without joining, resulting in a more efficient process. However, such systems have ad-hoc user interfaces and specific data formats, making them challenging to use. To address this problem, this paper presents OpenDBML, a framework for democratizing in-DB ML. OpenDBML offers a Python interface for multiple in-DB ML systems, a set of commonly used datasets, and the ability to add new datasets and in-DB ML systems via both Python and web interfaces. The paper also presents comprehensive demonstration scenarios to illustrate how to use OpenDBML effectively.
期刊介绍:
The Proceedings of the VLDB (PVLDB) welcomes original research papers on a broad range of research topics related to all aspects of data management, where systems issues play a significant role, such as data management system technology and information management infrastructures, including their very large scale of experimentation, novel architectures, and demanding applications as well as their underpinning theory. The scope of a submission for PVLDB is also described by the subject areas given below. Moreover, the scope of PVLDB is restricted to scientific areas that are covered by the combined expertise on the submission’s topic of the journal’s editorial board. Finally, the submission’s contributions should build on work already published in data management outlets, e.g., PVLDB, VLDBJ, ACM SIGMOD, IEEE ICDE, EDBT, ACM TODS, IEEE TKDE, and go beyond a syntactic citation.