{"title":"Focusing a vortex beam with circular polarization: angular momentum","authors":"V.V. Kotlyar, A.A. Kovalev, A.M. Telegin","doi":"10.18287/2412-6179-co-1289","DOIUrl":null,"url":null,"abstract":"Based on the Richards-Wolf formalism, we obtain two different exact expressions for the angular momentum (AM) density in the focus of a vortex beam with the topological charge n and with right circular polarization. One expression for the AM density is derived as the cross product of the position vector and the Poynting vector and has a nonzero value at the focus for an arbitrary integer number n. The other expression for the AM density is deduced as a sum of the orbital angular momentum (OAM) and the spin angular momentum (SAM). We reveal that at the focus of the light field under analysis, the latter turns zero at n = –1. While both these expressions are not equal to each other at each point of space, 3D integrals thereof are equal. Thus, exact expressions are obtained for densities of AM, SAM and OAM at the focus of a vortex beam with right-hand circular polarization and the identity for the densities AM = SAM + OAM is shown to be violated. Besides, it is shown that the expressions for the strength vectors of the electric and magnetic fields near the sharp focus, obtained by adopting the Richards-Wolf formalism, are exact solutions of the Maxwell's equations. Thus, Richards–Wolf theory exactly describes the behavior of light near the sharp focus in free space.","PeriodicalId":46692,"journal":{"name":"Computer Optics","volume":"84 1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18287/2412-6179-co-1289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 1
Abstract
Based on the Richards-Wolf formalism, we obtain two different exact expressions for the angular momentum (AM) density in the focus of a vortex beam with the topological charge n and with right circular polarization. One expression for the AM density is derived as the cross product of the position vector and the Poynting vector and has a nonzero value at the focus for an arbitrary integer number n. The other expression for the AM density is deduced as a sum of the orbital angular momentum (OAM) and the spin angular momentum (SAM). We reveal that at the focus of the light field under analysis, the latter turns zero at n = –1. While both these expressions are not equal to each other at each point of space, 3D integrals thereof are equal. Thus, exact expressions are obtained for densities of AM, SAM and OAM at the focus of a vortex beam with right-hand circular polarization and the identity for the densities AM = SAM + OAM is shown to be violated. Besides, it is shown that the expressions for the strength vectors of the electric and magnetic fields near the sharp focus, obtained by adopting the Richards-Wolf formalism, are exact solutions of the Maxwell's equations. Thus, Richards–Wolf theory exactly describes the behavior of light near the sharp focus in free space.
期刊介绍:
The journal is intended for researchers and specialists active in the following research areas: Diffractive Optics; Information Optical Technology; Nanophotonics and Optics of Nanostructures; Image Analysis & Understanding; Information Coding & Security; Earth Remote Sensing Technologies; Hyperspectral Data Analysis; Numerical Methods for Optics and Image Processing; Intelligent Video Analysis. The journal "Computer Optics" has been published since 1987. Published 6 issues per year.