Focusing a vortex beam with circular polarization: angular momentum

IF 1.1 Q4 OPTICS
V.V. Kotlyar, A.A. Kovalev, A.M. Telegin
{"title":"Focusing a vortex beam with circular polarization: angular momentum","authors":"V.V. Kotlyar, A.A. Kovalev, A.M. Telegin","doi":"10.18287/2412-6179-co-1289","DOIUrl":null,"url":null,"abstract":"Based on the Richards-Wolf formalism, we obtain two different exact expressions for the angular momentum (AM) density in the focus of a vortex beam with the topological charge n and with right circular polarization. One expression for the AM density is derived as the cross product of the position vector and the Poynting vector and has a nonzero value at the focus for an arbitrary integer number n. The other expression for the AM density is deduced as a sum of the orbital angular momentum (OAM) and the spin angular momentum (SAM). We reveal that at the focus of the light field under analysis, the latter turns zero at n = –1. While both these expressions are not equal to each other at each point of space, 3D integrals thereof are equal. Thus, exact expressions are obtained for densities of AM, SAM and OAM at the focus of a vortex beam with right-hand circular polarization and the identity for the densities AM = SAM + OAM is shown to be violated. Besides, it is shown that the expressions for the strength vectors of the electric and magnetic fields near the sharp focus, obtained by adopting the Richards-Wolf formalism, are exact solutions of the Maxwell's equations. Thus, Richards–Wolf theory exactly describes the behavior of light near the sharp focus in free space.","PeriodicalId":46692,"journal":{"name":"Computer Optics","volume":"84 1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18287/2412-6179-co-1289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 1

Abstract

Based on the Richards-Wolf formalism, we obtain two different exact expressions for the angular momentum (AM) density in the focus of a vortex beam with the topological charge n and with right circular polarization. One expression for the AM density is derived as the cross product of the position vector and the Poynting vector and has a nonzero value at the focus for an arbitrary integer number n. The other expression for the AM density is deduced as a sum of the orbital angular momentum (OAM) and the spin angular momentum (SAM). We reveal that at the focus of the light field under analysis, the latter turns zero at n = –1. While both these expressions are not equal to each other at each point of space, 3D integrals thereof are equal. Thus, exact expressions are obtained for densities of AM, SAM and OAM at the focus of a vortex beam with right-hand circular polarization and the identity for the densities AM = SAM + OAM is shown to be violated. Besides, it is shown that the expressions for the strength vectors of the electric and magnetic fields near the sharp focus, obtained by adopting the Richards-Wolf formalism, are exact solutions of the Maxwell's equations. Thus, Richards–Wolf theory exactly describes the behavior of light near the sharp focus in free space.
用圆偏振聚焦涡旋光束:角动量
基于Richards-Wolf形式,我们得到了拓扑电荷为n且具有右圆极化的涡旋光束聚焦处角动量密度的两种精确表达式。其中,调幅密度的表达式为位置矢量与坡印廷矢量的叉积,且对于任意整数n,该表达式在焦点处具有非零值。另一种表达式为轨道角动量(OAM)与自旋角动量(SAM)之和。我们发现,在分析光场的焦点处,后者在n = -1时变为零。虽然这两个表达式在空间的每个点上并不相等,但它们的三维积分是相等的。由此,得到了右圆偏振涡旋光束焦点处AM、SAM和OAM密度的精确表达式,证明了AM = SAM + OAM密度的恒等式不成立。此外,还证明了采用Richards-Wolf形式得到的尖锐焦点附近电场和磁场的强度矢量表达式是麦克斯韦方程组的精确解。因此,理查兹-沃尔夫理论准确地描述了光在自由空间中靠近尖锐焦点的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computer Optics
Computer Optics OPTICS-
CiteScore
4.20
自引率
10.00%
发文量
73
审稿时长
9 weeks
期刊介绍: The journal is intended for researchers and specialists active in the following research areas: Diffractive Optics; Information Optical Technology; Nanophotonics and Optics of Nanostructures; Image Analysis & Understanding; Information Coding & Security; Earth Remote Sensing Technologies; Hyperspectral Data Analysis; Numerical Methods for Optics and Image Processing; Intelligent Video Analysis. The journal "Computer Optics" has been published since 1987. Published 6 issues per year.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信