Saint-Venant Principle on Problems of Nonlocal Elasticity Theory

Q3 Mathematics
G.N. Kuvyrkin, A.A. Sokolov
{"title":"Saint-Venant Principle on Problems of Nonlocal Elasticity Theory","authors":"G.N. Kuvyrkin, A.A. Sokolov","doi":"10.18698/1812-3368-2023-4-4-17","DOIUrl":null,"url":null,"abstract":"Simulating the modern structural materials requires introduction of a model that takes into account structural features at the micro-level. The Eringen’s nonlocal elasticity theory model could be referred to such models. This model introduction was considered in comparison with the elasticity classical model. Main feature of the nonlocal model is that it takes into consideration the long-range interactions between the continuous medium particles; classical formulation is its special case. In this case, equations are having the integral differential form, which significantly complicates obtaining the analytical solutions. In this regard, the finite elements method was applied to find a solution using the isoparametric finite elements. Here, the main balance relations are satisfied, as in the classical elasticity theory model. However, the solutions obtained are differing to a larger extent from the classical solutions, since such solutions exhibit the edge effect in vicinity of the domain free boundaries. This effect, as well as preservation of the balance of forces, are demonstrated on the example of the Saint-Venant principle feasibility at stretching the rectangular plate. Solutions obtained in the nonlocal formulation have a significant decrease in the tensile stress decrease near the free boundaries and shear stresses in the cross section","PeriodicalId":12961,"journal":{"name":"Herald of the Bauman Moscow State Technical University. Series Natural Sciences","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Herald of the Bauman Moscow State Technical University. Series Natural Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18698/1812-3368-2023-4-4-17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Simulating the modern structural materials requires introduction of a model that takes into account structural features at the micro-level. The Eringen’s nonlocal elasticity theory model could be referred to such models. This model introduction was considered in comparison with the elasticity classical model. Main feature of the nonlocal model is that it takes into consideration the long-range interactions between the continuous medium particles; classical formulation is its special case. In this case, equations are having the integral differential form, which significantly complicates obtaining the analytical solutions. In this regard, the finite elements method was applied to find a solution using the isoparametric finite elements. Here, the main balance relations are satisfied, as in the classical elasticity theory model. However, the solutions obtained are differing to a larger extent from the classical solutions, since such solutions exhibit the edge effect in vicinity of the domain free boundaries. This effect, as well as preservation of the balance of forces, are demonstrated on the example of the Saint-Venant principle feasibility at stretching the rectangular plate. Solutions obtained in the nonlocal formulation have a significant decrease in the tensile stress decrease near the free boundaries and shear stresses in the cross section
非局部弹性理论问题的Saint-Venant原理
模拟现代结构材料需要引入一个考虑微观结构特征的模型。Eringen的非局部弹性理论模型可作为此类模型的参考。并与弹性力学经典模型进行了比较。非定域模型的主要特点是考虑了连续介质粒子间的远程相互作用;经典公式是它的特例。在这种情况下,方程具有积分微分形式,这使得获得解析解变得非常复杂。为此,采用有限元方法,利用等参数有限元求解。在这里,主要的平衡关系得到满足,就像在经典的弹性理论模型中一样。然而,得到的解与经典解有较大的差异,因为这些解在区域自由边界附近表现出边缘效应。这种效应,以及保持力的平衡,在圣维南原理的例子上证明了在拉伸矩形板时的可行性。在非局部公式中得到的解在自由边界附近的拉应力和截面上的剪切应力都有显著的减小
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
40
期刊介绍: The journal is aimed at publishing most significant results of fundamental and applied studies and developments performed at research and industrial institutions in the following trends (ASJC code): 2600 Mathematics 2200 Engineering 3100 Physics and Astronomy 1600 Chemistry 1700 Computer Science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信