{"title":"WEAK HEIRS, COHEIRS, AND THE ELLIS SEMIGROUPS","authors":"ADAM MALINOWSKI, LUDOMIR NEWELSKI","doi":"10.1017/jsl.2023.58","DOIUrl":null,"url":null,"abstract":"Abstract Assume $G\\prec H$ are groups and ${\\cal A}\\subseteq {\\cal P}(G),\\ {\\cal B}\\subseteq {\\cal P}(H)$ are algebras of sets closed under left group translation. Under some additional assumptions we find algebraic connections between the Ellis [semi]groups of the G -flow $S({\\cal A})$ and the H -flow $S({\\cal B})$ . We apply these results in the model theoretic context. Namely, assume G is a group definable in a model M and $M\\prec ^* N$ . Using weak heirs and weak coheirs we point out some algebraic connections between the Ellis semigroups $S_{ext,G}(M)$ and $S_{ext,G}(N)$ . Assuming every minimal left ideal in $S_{ext,G}(N)$ is a group we prove that the Ellis groups of $S_{ext,G}(M)$ are isomorphic to closed subgroups of the Ellis groups of $S_{ext,G}(N)$ .","PeriodicalId":17088,"journal":{"name":"Journal of Symbolic Logic","volume":"44 1","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symbolic Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/jsl.2023.58","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Assume $G\prec H$ are groups and ${\cal A}\subseteq {\cal P}(G),\ {\cal B}\subseteq {\cal P}(H)$ are algebras of sets closed under left group translation. Under some additional assumptions we find algebraic connections between the Ellis [semi]groups of the G -flow $S({\cal A})$ and the H -flow $S({\cal B})$ . We apply these results in the model theoretic context. Namely, assume G is a group definable in a model M and $M\prec ^* N$ . Using weak heirs and weak coheirs we point out some algebraic connections between the Ellis semigroups $S_{ext,G}(M)$ and $S_{ext,G}(N)$ . Assuming every minimal left ideal in $S_{ext,G}(N)$ is a group we prove that the Ellis groups of $S_{ext,G}(M)$ are isomorphic to closed subgroups of the Ellis groups of $S_{ext,G}(N)$ .
期刊介绍:
The Journal of Symbolic Logic publishes research in mathematical logic and its applications of the highest quality. Papers are expected to exhibit innovation and not merely be minor variations on established work. They should also be of interest to a broad audience. JSL has been, since its establishment in 1936, the leading journal in the world devoted to mathematical logic. Its prestige derives from its longevity and from the standard of submissions -- which, combined with the standards of reviewing, all contribute to the fact that it receives more citations than any other journal in logic.