Study of Hopf bifurcation of delayed tritrophic system: dinoflagellates, mussels, and crabs

Q3 Mathematics
M. Hafdane, I. Agmour, Y. El Foutayeni
{"title":"Study of Hopf bifurcation of delayed tritrophic system: dinoflagellates, mussels, and crabs","authors":"M. Hafdane, I. Agmour, Y. El Foutayeni","doi":"10.23939/mmc2023.01.066","DOIUrl":null,"url":null,"abstract":"In this paper, we have a discrete delayed dynamic system of three marine species: prey, predator, and superpredator. In addition to the effect of prey toxicity, we consider the negative fishing effect of these species. The study of this model consists of the search for equilibria with eigenvalue analysis, the existence of Hopf bifurcations at interior equilibria, and the determination of direction and stability analysis of Hopf bifurcation using the theory of normal form and center manifold. Some examples are given with numerical simulations to illustrate the results in different cases of delay.","PeriodicalId":37156,"journal":{"name":"Mathematical Modeling and Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Modeling and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23939/mmc2023.01.066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we have a discrete delayed dynamic system of three marine species: prey, predator, and superpredator. In addition to the effect of prey toxicity, we consider the negative fishing effect of these species. The study of this model consists of the search for equilibria with eigenvalue analysis, the existence of Hopf bifurcations at interior equilibria, and the determination of direction and stability analysis of Hopf bifurcation using the theory of normal form and center manifold. Some examples are given with numerical simulations to illustrate the results in different cases of delay.
延迟三营养系统Hopf分岔的研究:鞭毛类、贻贝和螃蟹
本文研究了一个由捕食者、捕食者和超级捕食者三种海洋生物组成的离散时滞动态系统。除了猎物毒性的影响外,我们还考虑了这些物种的负面捕捞效应。该模型的研究包括利用特征值分析寻找平衡点,利用范式理论和中心流形分析Hopf分岔的存在性,以及Hopf分岔方向的确定和稳定性分析。通过数值模拟举例说明了在不同延迟情况下的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematical Modeling and Computing
Mathematical Modeling and Computing Computer Science-Computational Theory and Mathematics
CiteScore
1.60
自引率
0.00%
发文量
54
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信