{"title":"Simultaneous Motion Replanning and Gravity Model Refinement near Small Solar System Bodies","authors":"Aditya Savio Paul, Michael Otte","doi":"10.2514/1.i011200","DOIUrl":null,"url":null,"abstract":"Strategic missions to orbit celestial bodies have primarily considered spacecraft trajectories as a two-step process: capture of the spacecraft within the gravitational influence of the body, followed by in-orbit maneuvers. Moreover, a priori maneuver planning approaches using Earth-based measurements tend to generate motion plans that have little scope of replanning, especially when the spacecraft is in the body’s vicinity. Fine-grained motion plans that respond to mission conditions require a detailed understanding of the gravitational forces around the body, which can provide essential information about the body. Our research focuses on a problem variant where the orbital maneuvers are designed to continually refine the onboard gravitational model of the body while simultaneously using the model to perform increasingly smoother orbital maneuvers. We develop a receding horizon approach. Starting with a (low-fidelity) gravity model created from Earth-based observations, the gravity model is continually updated as the spacecraft experiences varying gravitational forces. The updated model is simultaneously and continually used to replan the craft’s trajectory, ensuring that successive maneuvers respect the most up-to-date gravity model. The motion plan eventually attains a near-stable orbital motion. Such an approach has the potential to expand to autonomous missions to improve the mapping and exploration of smaller bodies.","PeriodicalId":50260,"journal":{"name":"Journal of Aerospace Information Systems","volume":"70 ","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Aerospace Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2514/1.i011200","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
Strategic missions to orbit celestial bodies have primarily considered spacecraft trajectories as a two-step process: capture of the spacecraft within the gravitational influence of the body, followed by in-orbit maneuvers. Moreover, a priori maneuver planning approaches using Earth-based measurements tend to generate motion plans that have little scope of replanning, especially when the spacecraft is in the body’s vicinity. Fine-grained motion plans that respond to mission conditions require a detailed understanding of the gravitational forces around the body, which can provide essential information about the body. Our research focuses on a problem variant where the orbital maneuvers are designed to continually refine the onboard gravitational model of the body while simultaneously using the model to perform increasingly smoother orbital maneuvers. We develop a receding horizon approach. Starting with a (low-fidelity) gravity model created from Earth-based observations, the gravity model is continually updated as the spacecraft experiences varying gravitational forces. The updated model is simultaneously and continually used to replan the craft’s trajectory, ensuring that successive maneuvers respect the most up-to-date gravity model. The motion plan eventually attains a near-stable orbital motion. Such an approach has the potential to expand to autonomous missions to improve the mapping and exploration of smaller bodies.
期刊介绍:
This Journal is devoted to the dissemination of original archival research papers describing new theoretical developments, novel applications, and case studies regarding advances in aerospace computing, information, and networks and communication systems that address aerospace-specific issues. Issues related to signal processing, electromagnetics, antenna theory, and the basic networking hardware transmission technologies of a network are not within the scope of this journal. Topics include aerospace systems and software engineering; verification and validation of embedded systems; the field known as ‘big data,’ data analytics, machine learning, and knowledge management for aerospace systems; human-automation interaction and systems health management for aerospace systems. Applications of autonomous systems, systems engineering principles, and safety and mission assurance are of particular interest. The Journal also features Technical Notes that discuss particular technical innovations or applications in the topics described above. Papers are also sought that rigorously review the results of recent research developments. In addition to original research papers and reviews, the journal publishes articles that review books, conferences, social media, and new educational modes applicable to the scope of the Journal.