Bulk Nanoporous Platinum for Electrochemical Actuation

Haonan Sun, Yizhou Huang, Shan Shi
{"title":"Bulk Nanoporous Platinum for Electrochemical Actuation","authors":"Haonan Sun, Yizhou Huang, Shan Shi","doi":"10.26599/emd.2023.9370006","DOIUrl":null,"url":null,"abstract":"Bulk nanoporous Pt samples with a remarkably fine ligament size down to 2 nm and a good mechanical robustness were fabricated for the first time by electrochemical dealloying Pt<sub>15</sub>Cu<sub>85</sub> master alloy in 1M H<sub>2</sub>SO<sub>4</sub> at 60°C. Attributing to the ultrafine nanostructure, the as-prepared np-Pt shows an electrochemical active specific surface area as high as 25 m<sup>2</sup>/g. The active surface area remains almost invariable even after 15% macroscopic compressive strain. Furthermore, np-Pt shows a considerably high thermal stability due to the low surface diffusivity of Pt. The high surface-to-volume ratio and mechanical robustness makes np-Pt a promising surface- or interface-controlled functional materials in particular when not only excellent electrochemical performances but also good mechanical performance are demand. In this work, we demonstrated the potential application of np-Pt as an electrochemical actuation material. In-situ dilatometry experiments revealed the surface adsorption/desorption of OH species on np-Pt causes significant strain variations. Our np-Pt electrochemical actuator shows an operating voltage down to 1.0V, a large reversible strain amplitude of 0.37% and a strain energy density of 1.64 MJ/m³.","PeriodicalId":124816,"journal":{"name":"Energy Materials and Devices","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Materials and Devices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26599/emd.2023.9370006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Bulk nanoporous Pt samples with a remarkably fine ligament size down to 2 nm and a good mechanical robustness were fabricated for the first time by electrochemical dealloying Pt15Cu85 master alloy in 1M H2SO4 at 60°C. Attributing to the ultrafine nanostructure, the as-prepared np-Pt shows an electrochemical active specific surface area as high as 25 m2/g. The active surface area remains almost invariable even after 15% macroscopic compressive strain. Furthermore, np-Pt shows a considerably high thermal stability due to the low surface diffusivity of Pt. The high surface-to-volume ratio and mechanical robustness makes np-Pt a promising surface- or interface-controlled functional materials in particular when not only excellent electrochemical performances but also good mechanical performance are demand. In this work, we demonstrated the potential application of np-Pt as an electrochemical actuation material. In-situ dilatometry experiments revealed the surface adsorption/desorption of OH species on np-Pt causes significant strain variations. Our np-Pt electrochemical actuator shows an operating voltage down to 1.0V, a large reversible strain amplitude of 0.37% and a strain energy density of 1.64 MJ/m³.
用于电化学驱动的大块纳米多孔铂
在60°C的条件下,将Pt15Cu85中间合金在1M H2SO4中电化学合金化,首次制备了具有2 nm细孔尺寸和良好机械鲁棒性的纳米多孔Pt样品。由于纳米结构超细,所制备的np-Pt的电化学活性比表面积高达25 m2/g。即使在15%宏观压缩应变后,活性表面积几乎保持不变。此外,由于Pt的低表面扩散率,np-Pt表现出相当高的热稳定性。高表面体积比和机械鲁棒性使np-Pt成为一种有前途的表面或界面控制功能材料,特别是在需要优异的电化学性能和良好的机械性能时。在这项工作中,我们展示了np-Pt作为电化学驱动材料的潜在应用。原位膨胀实验表明,OH在np-Pt表面的吸附/解吸引起了显著的应变变化。我们的np-Pt电化学执行器工作电压低至1.0V,可逆应变幅值大至0.37%,应变能密度为1.64 MJ/m³。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信