Balancing machine learning and artificial intelligence in soil science with human perspective and experience

IF 5.2 2区 农林科学 Q1 SOIL SCIENCE
David C. WEINDORF , Somsubhra CHAKRABORTY
{"title":"Balancing machine learning and artificial intelligence in soil science with human perspective and experience","authors":"David C. WEINDORF ,&nbsp;Somsubhra CHAKRABORTY","doi":"10.1016/j.pedsph.2023.09.010","DOIUrl":null,"url":null,"abstract":"<div><p>Machine learning and artificial intelligence continue to evolve at a rapid pace, with many potential applications related to soil science. Even so, human experience and perception play an invaluable role in characterizing soil properties, especially qualitative properties that may elude sensing/computer-based modeling approaches. The elegant solution to this conundrum relies on the synthesis of computer-aided predictive modeling with human insight and knowledge.</p></div>","PeriodicalId":49709,"journal":{"name":"Pedosphere","volume":"34 1","pages":"Pages 9-12"},"PeriodicalIF":5.2000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1002016023001091/pdfft?md5=a4dd0b1813e019784bce5df02b1048e5&pid=1-s2.0-S1002016023001091-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pedosphere","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1002016023001091","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Machine learning and artificial intelligence continue to evolve at a rapid pace, with many potential applications related to soil science. Even so, human experience and perception play an invaluable role in characterizing soil properties, especially qualitative properties that may elude sensing/computer-based modeling approaches. The elegant solution to this conundrum relies on the synthesis of computer-aided predictive modeling with human insight and knowledge.

平衡土壤科学中的机器学习和人工智能与人类的视角和经验
机器学习和人工智能仍在飞速发展,与土壤科学相关的潜在应用层出不穷。即便如此,人类的经验和感知仍在表征土壤特性方面发挥着不可估量的作用,尤其是那些可能无法通过传感/计算机建模方法表征的定性特性。解决这一难题的有效方法是将计算机辅助预测建模与人类的洞察力和知识相结合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Pedosphere
Pedosphere 环境科学-土壤科学
CiteScore
11.70
自引率
1.80%
发文量
147
审稿时长
5.0 months
期刊介绍: PEDOSPHERE—a peer-reviewed international journal published bimonthly in English—welcomes submissions from scientists around the world under a broad scope of topics relevant to timely, high quality original research findings, especially up-to-date achievements and advances in the entire field of soil science studies dealing with environmental science, ecology, agriculture, bioscience, geoscience, forestry, etc. It publishes mainly original research articles as well as some reviews, mini reviews, short communications and special issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信