Role of nosZ I-carrying microorganisms in regulating nitrous oxide reduction during forest conversion: A comparison of plantations and a secondary forest in subtropical soils
Milin DENG , Guiping YE , Hang-Wei HU , Chao XU , Ping YANG , Yong ZHENG , Jupei SHEN , Shengsheng JIN , Ji-Zheng HE , Yongxin LIN
{"title":"Role of nosZ I-carrying microorganisms in regulating nitrous oxide reduction during forest conversion: A comparison of plantations and a secondary forest in subtropical soils","authors":"Milin DENG , Guiping YE , Hang-Wei HU , Chao XU , Ping YANG , Yong ZHENG , Jupei SHEN , Shengsheng JIN , Ji-Zheng HE , Yongxin LIN","doi":"10.1016/j.pedsph.2023.09.006","DOIUrl":null,"url":null,"abstract":"<div><div>The conversion of natural forests in subtropical regions to plantations or secondary forests has resulted in alterations in soil variables, microbial communities, and microbially mediated processes, including nitrous oxide (N<sub>2</sub>O) emissions. However, how forest conversion influences soil N<sub>2</sub>O reduction and the abundance and community structure of N<sub>2</sub>O-reducing microorganisms remains unclear. Here, we investigated the impact of converting natural forests to a secondary forest and <em>Cunninghamia lanceolata</em> and <em>Pinus massoniana</em> plantations on the abundance and community structure of N<sub>2</sub>O-reducing microorganisms in both bulk soils and soil aggregates. Compared with the secondary forest, plantations had higher soil pH and available phosphorus and moisture contents, lower soil NH<sub>4</sub><sup>+</sup> content, but similar aggregate sizes. Compared with the secondary forest, the conversion of natural forest to plantations resulted in significantly higher soil N<sub>2</sub>O reduction rate and increased abundances of <em>nosZ</em> I and <em>nosZ</em> II genes in bulk soils and soil aggregates. The abundance of <em>nosZ</em> I was higher than that of <em>nosZ</em> II in all tested soils and had a stronger association with N<sub>2</sub>O reduction rate, suggesting the greater role of <em>nosZ</em> I-carrying microorganisms in N<sub>2</sub>O consumption. Forest conversion had a greater impact on the community composition of <em>nosZ</em> I than <em>nosZ</em> II, mainly by increasing the relative abundances of alpha- and beta-Proteobacteria, while decreasing gamma-Proteobacteria. However, <em>nosZ</em> II-carrying microorganisms were exclusively dominated by Gemmatimonadetes and less affected by forest conversion. Taken together, our findings significantly contribute to our understanding of the eco-physiological characteristics of N<sub>2</sub>O-reducing microorganisms and highlight the importance of <em>nosZ</em> I-carrying microorganisms in N<sub>2</sub>O consumption in subtropical forest soils.</div></div>","PeriodicalId":49709,"journal":{"name":"Pedosphere","volume":"34 6","pages":"Pages 1066-1075"},"PeriodicalIF":5.2000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pedosphere","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1002016023001054","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The conversion of natural forests in subtropical regions to plantations or secondary forests has resulted in alterations in soil variables, microbial communities, and microbially mediated processes, including nitrous oxide (N2O) emissions. However, how forest conversion influences soil N2O reduction and the abundance and community structure of N2O-reducing microorganisms remains unclear. Here, we investigated the impact of converting natural forests to a secondary forest and Cunninghamia lanceolata and Pinus massoniana plantations on the abundance and community structure of N2O-reducing microorganisms in both bulk soils and soil aggregates. Compared with the secondary forest, plantations had higher soil pH and available phosphorus and moisture contents, lower soil NH4+ content, but similar aggregate sizes. Compared with the secondary forest, the conversion of natural forest to plantations resulted in significantly higher soil N2O reduction rate and increased abundances of nosZ I and nosZ II genes in bulk soils and soil aggregates. The abundance of nosZ I was higher than that of nosZ II in all tested soils and had a stronger association with N2O reduction rate, suggesting the greater role of nosZ I-carrying microorganisms in N2O consumption. Forest conversion had a greater impact on the community composition of nosZ I than nosZ II, mainly by increasing the relative abundances of alpha- and beta-Proteobacteria, while decreasing gamma-Proteobacteria. However, nosZ II-carrying microorganisms were exclusively dominated by Gemmatimonadetes and less affected by forest conversion. Taken together, our findings significantly contribute to our understanding of the eco-physiological characteristics of N2O-reducing microorganisms and highlight the importance of nosZ I-carrying microorganisms in N2O consumption in subtropical forest soils.
期刊介绍:
PEDOSPHERE—a peer-reviewed international journal published bimonthly in English—welcomes submissions from scientists around the world under a broad scope of topics relevant to timely, high quality original research findings, especially up-to-date achievements and advances in the entire field of soil science studies dealing with environmental science, ecology, agriculture, bioscience, geoscience, forestry, etc. It publishes mainly original research articles as well as some reviews, mini reviews, short communications and special issues.