A critical comparative review of generalized gradient approximation: the ground state of Fe3Al as a test case

IF 1.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Monika Vsianska, Martin Friák, Mojmir Sob
{"title":"A critical comparative review of generalized gradient approximation: the ground state of Fe3Al as a test case","authors":"Monika Vsianska, Martin Friák, Mojmir Sob","doi":"10.1088/1361-651x/ad084c","DOIUrl":null,"url":null,"abstract":"Abstract Quantum-mechanical calculations have become an indispensable tool for computational materials science due to their unprecedented versatility and reliability. Focusing specifically on the Density Functional Theory (DFT), the reliability of its numerous implementations was tested and verified mostly for pure elements. An extensive testing of binaries, ternaries and more-component phases is still rather rare due to a vast configurational space that is nearly infinite already for binaries. Importantly, there are well known cases of theoretical predictions contradicting experiments. In this paper, we analyze the failure of theory to reproduce correctly the ground state of the Fe 3 Al intermetallic compound. Namely, most exchange-correlation (xc) energies within the generalized gradient approximation (GGA) predict this material in the L1 2 structure instead of the experimentally found D0 3 structure. We test the performance of 36 combinations of 6 different GGA parametrizations and 6 different Fe and Al potentials. These combinations are evaluated employing a multi-dimensional multi-criteria descriptor { <?CDATA $\\Delta E$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mi mathvariant=\"normal\">Δ</mml:mi> <mml:mi>E</mml:mi> </mml:math> , a , { <?CDATA $\\mu^{\\mathrm{Fe}}$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:msup> <mml:mi>μ</mml:mi> <mml:mrow> <mml:mrow> <mml:mi mathvariant=\"normal\">F</mml:mi> <mml:mi mathvariant=\"normal\">e</mml:mi> </mml:mrow> </mml:mrow> </mml:msup> </mml:math> }, { C ij }} consisting of fundamental thermodynamic properties (energy difference <?CDATA $\\Delta E$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mi mathvariant=\"normal\">Δ</mml:mi> <mml:mi>E</mml:mi> </mml:math> between the D0 3 and L1 2 structures), a structural aspect (lattice parameter a ), electronic-structure related magnetic properties (local magnetic moments of Fe atoms { <?CDATA $\\mu^{\\mathrm{Fe}}$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:msup> <mml:mi>μ</mml:mi> <mml:mrow> <mml:mrow> <mml:mi mathvariant=\"normal\">F</mml:mi> <mml:mi mathvariant=\"normal\">e</mml:mi> </mml:mrow> </mml:mrow> </mml:msup> </mml:math> }) and elastic properties (a complete set of second-order elastic constants { C ij }). Considering the thermodynamic stability as the most critical aspect, we identify the Perdew–Wang (1991) GGA xc-functional parametrization as the optimum for describing the electronic structure of the Fe 3 Al compound.","PeriodicalId":18648,"journal":{"name":"Modelling and Simulation in Materials Science and Engineering","volume":"59 21","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modelling and Simulation in Materials Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-651x/ad084c","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Quantum-mechanical calculations have become an indispensable tool for computational materials science due to their unprecedented versatility and reliability. Focusing specifically on the Density Functional Theory (DFT), the reliability of its numerous implementations was tested and verified mostly for pure elements. An extensive testing of binaries, ternaries and more-component phases is still rather rare due to a vast configurational space that is nearly infinite already for binaries. Importantly, there are well known cases of theoretical predictions contradicting experiments. In this paper, we analyze the failure of theory to reproduce correctly the ground state of the Fe 3 Al intermetallic compound. Namely, most exchange-correlation (xc) energies within the generalized gradient approximation (GGA) predict this material in the L1 2 structure instead of the experimentally found D0 3 structure. We test the performance of 36 combinations of 6 different GGA parametrizations and 6 different Fe and Al potentials. These combinations are evaluated employing a multi-dimensional multi-criteria descriptor { Δ E , a , { μ F e }, { C ij }} consisting of fundamental thermodynamic properties (energy difference Δ E between the D0 3 and L1 2 structures), a structural aspect (lattice parameter a ), electronic-structure related magnetic properties (local magnetic moments of Fe atoms { μ F e }) and elastic properties (a complete set of second-order elastic constants { C ij }). Considering the thermodynamic stability as the most critical aspect, we identify the Perdew–Wang (1991) GGA xc-functional parametrization as the optimum for describing the electronic structure of the Fe 3 Al compound.
广义梯度近似的关键比较回顾:Fe3Al基态作为一个测试案例
摘要量子力学计算以其前所未有的通用性和可靠性,已成为计算材料科学不可缺少的工具。特别关注密度泛函理论(DFT),其众多实现的可靠性主要是针对纯元素进行了测试和验证。对二进制、三元和多组件阶段的广泛测试仍然相当罕见,因为对于二进制来说,巨大的配置空间几乎已经是无限的。重要的是,有一些众所周知的理论预测与实验相矛盾的案例。本文分析了理论不能正确再现铁铝金属间化合物基态的缺陷。也就是说,在广义梯度近似(GGA)中,大多数交换相关(xc)能量预测该材料为L1 2结构,而不是实验发现的D0 3结构。我们测试了6种不同的GGA参数和6种不同的Fe和Al电位的36种组合的性能。这些组合评估采用多维多标准描述符{ΔE, a,{μF E }, { C ij}}组成的基本热力学性质(能量差ΔE L1 D0 3和2之间的结构),结构方面(晶格参数),电子结构相关的磁性(本地铁原子的磁矩{μF E})和弹性属性(一套完整的二阶弹性常数C ij{})。考虑到热力学稳定性是最关键的方面,我们确定Perdew-Wang (1991) GGA xc功能参数化是描述fe3al化合物电子结构的最佳方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.30
自引率
5.60%
发文量
96
审稿时长
1.7 months
期刊介绍: Serving the multidisciplinary materials community, the journal aims to publish new research work that advances the understanding and prediction of material behaviour at scales from atomistic to macroscopic through modelling and simulation. Subject coverage: Modelling and/or simulation across materials science that emphasizes fundamental materials issues advancing the understanding and prediction of material behaviour. Interdisciplinary research that tackles challenging and complex materials problems where the governing phenomena may span different scales of materials behaviour, with an emphasis on the development of quantitative approaches to explain and predict experimental observations. Material processing that advances the fundamental materials science and engineering underpinning the connection between processing and properties. Covering all classes of materials, and mechanical, microstructural, electronic, chemical, biological, and optical properties.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信