Many forcing axioms for all regular uncountable cardinals

IF 0.8 2区 数学 Q2 MATHEMATICS
Noam Greenberg, Saharon Shelah
{"title":"Many forcing axioms for all regular uncountable cardinals","authors":"Noam Greenberg, Saharon Shelah","doi":"10.1007/s11856-023-2570-0","DOIUrl":null,"url":null,"abstract":"Abstract A central theme in set theory is to find universes with extreme, well-understood behaviour. The case we are interested in is assuming GCH and having a strong forcing axiom of higher order than usual. Instead of “every suitable forcing notion of size λ has a sufficiently generic filter” we shall say “for every suitable method of producing notions of forcing based on a given stationary set, there is such a suitable stationary set S and sufficiently generic filters for the notion of forcing attached to S ”. Such notions of forcing are important for Abelian group theory, but this application is delayed for a sequel.","PeriodicalId":14661,"journal":{"name":"Israel Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Israel Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11856-023-2570-0","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract A central theme in set theory is to find universes with extreme, well-understood behaviour. The case we are interested in is assuming GCH and having a strong forcing axiom of higher order than usual. Instead of “every suitable forcing notion of size λ has a sufficiently generic filter” we shall say “for every suitable method of producing notions of forcing based on a given stationary set, there is such a suitable stationary set S and sufficiently generic filters for the notion of forcing attached to S ”. Such notions of forcing are important for Abelian group theory, but this application is delayed for a sequel.
许多强制公理适用于所有正则不可数基数
集合论的一个中心主题是寻找具有极端、可理解行为的宇宙。我们感兴趣的情况是假设GCH并且有一个强强迫公理比通常的高阶。而不是“每一个大小为λ的合适的强迫概念都有一个足够一般的过滤器”,我们应该说“对于每一个基于给定平稳集产生强迫概念的合适方法,都有这样一个合适的平稳集S和附在S上的强迫概念的足够一般过滤器”。这种强迫的概念对于阿贝尔群论是很重要的,但是这个应用被推迟到后续。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
90
审稿时长
6 months
期刊介绍: The Israel Journal of Mathematics is an international journal publishing high-quality original research papers in a wide spectrum of pure and applied mathematics. The prestigious interdisciplinary editorial board reflects the diversity of subjects covered in this journal, including set theory, model theory, algebra, group theory, number theory, analysis, functional analysis, ergodic theory, algebraic topology, geometry, combinatorics, theoretical computer science, mathematical physics, and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信