Conservation strength of the infinite pigeonhole principle for trees

IF 0.8 2区 数学 Q2 MATHEMATICS
Chitat Chong, Wei Wang, Yue Yang
{"title":"Conservation strength of the infinite pigeonhole principle for trees","authors":"Chitat Chong, Wei Wang, Yue Yang","doi":"10.1007/s11856-023-2567-8","DOIUrl":null,"url":null,"abstract":"Let TT1 be the combinatorial principle stating that every finite coloring of the infinite full binary tree has a homogeneous isomorphic subtree. Let RT 2 2 and WKL0 denote respectively the principles of Ramsey’s theorem for pairs and the weak König lemma. It is proved that TT1 + RT 2 2 + WKL0 is Π 3 0 -conservative over the base system RCA0. Thus over RCA0, TT1 and Ramsey’s theorem for pairs prove the same Π 3 0 -sentences.","PeriodicalId":14661,"journal":{"name":"Israel Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Israel Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11856-023-2567-8","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let TT1 be the combinatorial principle stating that every finite coloring of the infinite full binary tree has a homogeneous isomorphic subtree. Let RT 2 2 and WKL0 denote respectively the principles of Ramsey’s theorem for pairs and the weak König lemma. It is proved that TT1 + RT 2 2 + WKL0 is Π 3 0 -conservative over the base system RCA0. Thus over RCA0, TT1 and Ramsey’s theorem for pairs prove the same Π 3 0 -sentences.
树木无限鸽子洞原理的守恒强度
设TT1为表示无限满二叉树的每一个有限着色都有一个齐次同构子树的组合原理。设rt2和WKL0分别表示拉姆齐定理对和弱König引理的原理。证明了TT1 + rt2 + WKL0在基系统RCA0上是Π 30 -保守的。因此,在RCA0上,TT1和拉姆齐定理证明了相同的Π 30句。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
90
审稿时长
6 months
期刊介绍: The Israel Journal of Mathematics is an international journal publishing high-quality original research papers in a wide spectrum of pure and applied mathematics. The prestigious interdisciplinary editorial board reflects the diversity of subjects covered in this journal, including set theory, model theory, algebra, group theory, number theory, analysis, functional analysis, ergodic theory, algebraic topology, geometry, combinatorics, theoretical computer science, mathematical physics, and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信