Dayatri Bolaños-Picado, Cindy Torres, Diego González-Flores
{"title":"Primary aluminum-air flow battery for high-power applications: Optimization of power and self-discharge","authors":"Dayatri Bolaños-Picado, Cindy Torres, Diego González-Flores","doi":"10.5599/jese.2075","DOIUrl":null,"url":null,"abstract":"Aluminum-air batteries are a front-runner technology in applications requiring a primary energy source. Aluminum-air flow batteries have many advantages, such as high energy density, low price, and recyclability. One of the main challenges with aluminum-air batteries is achieving high power while parasitic corrosion and self-discharge are minimized. In this study, the optimization of an aluminum-air flow cell by multiple-parameters analysis and integration of a four-cell stack are shown. We also studied the incorporation of ammonium metavanadate (NH4VO3) as anticorrosive in 4 mol L-1 KOH electrolyte by discharge and polarization plots. It was concluded that NH4VO3 is an efficient anticorrosive at low currents, but it limits the battery reaction at high-current and high-power applications. Nevertheless, high currents inhibit the corrosion reaction using 4 mol L-1 KOH electrolyte, allowing high power and capacity without anticorrosive additives. The flow in the stack also plays a significant role, and parallel flow is suggested over cascade flow since the latter results in the progressive accumulation of hydrogen as the electrolyte flows through the stack.","PeriodicalId":15660,"journal":{"name":"Journal of Electrochemical Science and Engineering","volume":"34 19","pages":"0"},"PeriodicalIF":2.9000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrochemical Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5599/jese.2075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Aluminum-air batteries are a front-runner technology in applications requiring a primary energy source. Aluminum-air flow batteries have many advantages, such as high energy density, low price, and recyclability. One of the main challenges with aluminum-air batteries is achieving high power while parasitic corrosion and self-discharge are minimized. In this study, the optimization of an aluminum-air flow cell by multiple-parameters analysis and integration of a four-cell stack are shown. We also studied the incorporation of ammonium metavanadate (NH4VO3) as anticorrosive in 4 mol L-1 KOH electrolyte by discharge and polarization plots. It was concluded that NH4VO3 is an efficient anticorrosive at low currents, but it limits the battery reaction at high-current and high-power applications. Nevertheless, high currents inhibit the corrosion reaction using 4 mol L-1 KOH electrolyte, allowing high power and capacity without anticorrosive additives. The flow in the stack also plays a significant role, and parallel flow is suggested over cascade flow since the latter results in the progressive accumulation of hydrogen as the electrolyte flows through the stack.