DNA Origami Lipid Membrane Interactions Defined at Single-Molecular Resolution

Elena Georgiou, Javier Cabello Garcia, Yongzheng Xing, Stefan Howorka
{"title":"DNA Origami Lipid Membrane Interactions Defined at Single-Molecular Resolution","authors":"Elena Georgiou, Javier Cabello Garcia, Yongzheng Xing, Stefan Howorka","doi":"10.1101/2023.11.14.567022","DOIUrl":null,"url":null,"abstract":"Rigid DNA nanostructures that bind to floppy bilayer membranes are of fundamental interest as they replicate biological cytoskeletons for synthetic biology, biosensing, and biological research. Here, we establish principles underpinning the controlled interaction of DNA structures and lipid bilayers. As membrane anchors mediate interaction, more than 20 versions of a core DNA nanostructure are built each carrying up to five individual cholesterol anchors of different steric accessibility within the 3D geometry. The structures binding to membrane vesicles of tunable curvature is determined with ensemble methods and by single-molecule localization microscopy. This screen yields quantitative and unexpected insight on which steric anchor points cause efficient binding. Strikingly, defined nanostructures with a single molecular anchor discriminate effectively between vesicles of different nanoscale curvatures which may be exploited to discern diagnostically relevant membrane vesicles based on size. Furthermore, we reveal anchor-mediated bilayer interaction to be co-controlled by non-lipidated DNA regions and localized membrane curvatures stemming from heterogenous lipid composition, which modifies existing biophysical models. Our study extends DNA nanotechnology to control interactions with bilayer membranes and thereby facilitate the design of nanodevices for vesicle-based diagnostics, biosensing, and protocells.","PeriodicalId":486943,"journal":{"name":"bioRxiv (Cold Spring Harbor Laboratory)","volume":"39 18","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv (Cold Spring Harbor Laboratory)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.11.14.567022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Rigid DNA nanostructures that bind to floppy bilayer membranes are of fundamental interest as they replicate biological cytoskeletons for synthetic biology, biosensing, and biological research. Here, we establish principles underpinning the controlled interaction of DNA structures and lipid bilayers. As membrane anchors mediate interaction, more than 20 versions of a core DNA nanostructure are built each carrying up to five individual cholesterol anchors of different steric accessibility within the 3D geometry. The structures binding to membrane vesicles of tunable curvature is determined with ensemble methods and by single-molecule localization microscopy. This screen yields quantitative and unexpected insight on which steric anchor points cause efficient binding. Strikingly, defined nanostructures with a single molecular anchor discriminate effectively between vesicles of different nanoscale curvatures which may be exploited to discern diagnostically relevant membrane vesicles based on size. Furthermore, we reveal anchor-mediated bilayer interaction to be co-controlled by non-lipidated DNA regions and localized membrane curvatures stemming from heterogenous lipid composition, which modifies existing biophysical models. Our study extends DNA nanotechnology to control interactions with bilayer membranes and thereby facilitate the design of nanodevices for vesicle-based diagnostics, biosensing, and protocells.
单分子分辨率下定义的DNA折纸脂膜相互作用
刚性DNA纳米结构结合在软性双层膜上,在合成生物学、生物传感和生物学研究中复制生物细胞骨架具有重要意义。在这里,我们建立了DNA结构和脂质双分子层控制相互作用的原理。由于膜锚介导相互作用,构建了超过20个版本的核心DNA纳米结构,每个结构在三维几何结构中携带多达5个不同立体可达性的胆固醇锚。用系综方法和单分子定位显微镜研究了曲率可调的膜泡结构。该屏幕提供了定量的和意想不到的见解,哪些立体锚点导致有效的绑定。引人注目的是,具有单一分子锚定的纳米结构可以有效地区分不同纳米尺度曲率的囊泡,这可能被用来根据大小来识别诊断相关的膜囊泡。此外,我们发现锚定介导的双层相互作用由非脂化DNA区域和由异质性脂质组成的局部膜曲率共同控制,这改变了现有的生物物理模型。我们的研究扩展了DNA纳米技术来控制与双层膜的相互作用,从而促进了基于囊泡诊断、生物传感和原始细胞的纳米器件的设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信