Enhancing cyber security at scale with ML/AI frameworks

Bharathasimha Reddy, Amit Nagal, Aditya K Sood, Ruthvik Reddy SL
{"title":"Enhancing cyber security at scale with ML/AI frameworks","authors":"Bharathasimha Reddy, Amit Nagal, Aditya K Sood, Ruthvik Reddy SL","doi":"10.12968/s1353-4858(23)70022-6","DOIUrl":null,"url":null,"abstract":"The world is expanding digitally at an ever-accelerating rate. As networks become larger and data becomes more complex, cyber security challenges are growing rapidly. To combat cyber attacks, machine learning (ML) and other artificial intelligence (AI) solutions should be utilised to design and build robust security solutions. With the explosion in the number of new techniques and frameworks in the ML/AI space, it is tricky for organisations to identify the best frameworks and approaches to build robust ML/AI solutions. In this article, an empirical analysis has been performed on various ML/AI frameworks to determine the performance and effectiveness of running ML/AI algorithms in a distributed manner.","PeriodicalId":100949,"journal":{"name":"Network Security","volume":"24 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12968/s1353-4858(23)70022-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The world is expanding digitally at an ever-accelerating rate. As networks become larger and data becomes more complex, cyber security challenges are growing rapidly. To combat cyber attacks, machine learning (ML) and other artificial intelligence (AI) solutions should be utilised to design and build robust security solutions. With the explosion in the number of new techniques and frameworks in the ML/AI space, it is tricky for organisations to identify the best frameworks and approaches to build robust ML/AI solutions. In this article, an empirical analysis has been performed on various ML/AI frameworks to determine the performance and effectiveness of running ML/AI algorithms in a distributed manner.
利用机器学习/人工智能框架大规模加强网络安全
世界正在以不断加速的速度进行数字化扩张。随着网络规模的不断扩大和数据的日益复杂,网络安全面临的挑战日益增多。为了对抗网络攻击,应该利用机器学习(ML)和其他人工智能(AI)解决方案来设计和构建强大的安全解决方案。随着机器学习/人工智能领域新技术和框架数量的爆炸式增长,组织很难确定构建强大的机器学习/人工智能解决方案的最佳框架和方法。在本文中,对各种ML/AI框架进行了实证分析,以确定以分布式方式运行ML/AI算法的性能和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信