Isotopic evidence for nickel limitation of biological productivity in the ocean

Tzu-Hao Wang, Qiong Zhang, Tu-Te Hsieh, Gideon Henderson, Rosalind Rickaby
{"title":"Isotopic evidence for nickel limitation of biological productivity in the ocean","authors":"Tzu-Hao Wang, Qiong Zhang, Tu-Te Hsieh, Gideon Henderson, Rosalind Rickaby","doi":"10.21203/rs.3.rs-2207343/v1","DOIUrl":null,"url":null,"abstract":"Abstract Nickel (Ni) is an essential element for many important enzyme systems 1,2 . Two puzzling aspects of Ni biogeochemical cycling in the modern ocean have emerged. First, unlike a number of bio-essential elements, Ni is never fully depleted in the surface ocean 3-13 . Second, a heavy Ni isotopic composition in the surface ocean, indicative of removal of light isotopes likely by productivity, is not observed globally 6-13 . Active debate persists regarding the isotopic fractionation of Ni associated with biological uptake and the bioavailability of Ni in the ocean 7,9,11-13 . Here we show that, in contrast to biological isotopic fractionation for most other elements, three cosmopolitan phytoplankton species preferentially take up isotopically heavy Ni from the culture media, with species-dependent magnitudes of fractionation, under varying Ni availability. This fractionation towards heavy Ni isotopes can be explained, in our experiments, by the characteristic strong Ni-binding of cellular metal acquisition systems, relative to weaker binding by ligands in the culture media, with a secondary influence of cellular relocation and/or efflux. In the open ocean, an inferred stronger binding of Ni to ligands present in seawater, relative to that of the phytoplankton, yields the inverse fractionation (towards light isotopes in the biomass) and limits the bioavailability of metals in the surface ocean. Reconciling seawater Ni concentration and isotope data, results from incubation experiments, and marine gene biogeography, we demonstrate that Ni is limited for marine phytoplankton in the mid-latitude surface ocean with low Ni concentration and heavy Ni isotope composition, with implications for the significance of Ni bioavailability on both ocean productivity and carbon cycling.","PeriodicalId":500086,"journal":{"name":"Research Square (Research Square)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research Square (Research Square)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21203/rs.3.rs-2207343/v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Nickel (Ni) is an essential element for many important enzyme systems 1,2 . Two puzzling aspects of Ni biogeochemical cycling in the modern ocean have emerged. First, unlike a number of bio-essential elements, Ni is never fully depleted in the surface ocean 3-13 . Second, a heavy Ni isotopic composition in the surface ocean, indicative of removal of light isotopes likely by productivity, is not observed globally 6-13 . Active debate persists regarding the isotopic fractionation of Ni associated with biological uptake and the bioavailability of Ni in the ocean 7,9,11-13 . Here we show that, in contrast to biological isotopic fractionation for most other elements, three cosmopolitan phytoplankton species preferentially take up isotopically heavy Ni from the culture media, with species-dependent magnitudes of fractionation, under varying Ni availability. This fractionation towards heavy Ni isotopes can be explained, in our experiments, by the characteristic strong Ni-binding of cellular metal acquisition systems, relative to weaker binding by ligands in the culture media, with a secondary influence of cellular relocation and/or efflux. In the open ocean, an inferred stronger binding of Ni to ligands present in seawater, relative to that of the phytoplankton, yields the inverse fractionation (towards light isotopes in the biomass) and limits the bioavailability of metals in the surface ocean. Reconciling seawater Ni concentration and isotope data, results from incubation experiments, and marine gene biogeography, we demonstrate that Ni is limited for marine phytoplankton in the mid-latitude surface ocean with low Ni concentration and heavy Ni isotope composition, with implications for the significance of Ni bioavailability on both ocean productivity and carbon cycling.
镍限制海洋生物生产力的同位素证据
摘要镍(Ni)是许多重要酶系统的必需元素1,2。现代海洋中镍生物地球化学循环的两个令人困惑的方面已经出现。首先,与许多生物必需元素不同,镍在海洋表面永远不会完全耗尽。其次,在全球范围内没有观察到海洋表面的重镍同位素组成,这表明轻同位素可能是由生产力去除的6-13。关于镍的同位素分异与海洋中镍的生物吸收和生物利用度之间的关系,目前仍存在激烈的争论7,9,11-13。在这里,我们发现,与大多数其他元素的生物同位素分馏相反,在不同的Ni可用性下,三种世界性的浮游植物优先从培养基中吸收同位素重Ni,其分馏量取决于物种。在我们的实验中,这种向重镍同位素的分化可以通过细胞金属获取系统的强镍结合特性来解释,相对于培养基中配体的弱结合,其次是细胞迁移和/或外排的影响。在开阔的海洋中,相对于浮游植物,推断出镍与海水中存在的配体的结合更强,产生了相反的分异(向生物量中的轻同位素方向),并限制了金属在海洋表面的生物利用度。结合海水Ni浓度和同位素数据、培养实验结果以及海洋基因生物地理学,我们发现在低Ni浓度和重Ni同位素组成的中纬度海洋表面,Ni对海洋浮游植物是有限的,这意味着Ni生物利用度对海洋生产力和碳循环的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信