cellstruct: Metrics scores to quantify the biological preservation between two embeddings

Jui Wan Loh, John F Ouyang
{"title":"cellstruct: Metrics scores to quantify the biological preservation between two embeddings","authors":"Jui Wan Loh, John F Ouyang","doi":"10.1101/2023.11.13.566337","DOIUrl":null,"url":null,"abstract":"Single-cell transcriptomics (scRNA-seq) is extensively applied in uncovering biological heterogeneity. There are different dimensionality reduction techniques, but it is unclear which method works best in preserving biological information when creating a two-dimensional embedding. Therefore, we implemented cellstruct, which calculates three metrics scores to quantify the global or local biological similarity between a two-dimensional and its corresponding higher-dimensional PCA embeddings at either single-cell or cluster level. These scores pinpoint cell populations with low biological information preservation, in addition to visualizing the cell-cell or cluster-cluster relationships in the PCA embedding. Two study cases illustrate the usefulness of cellstruct in exploratory data analysis.","PeriodicalId":486943,"journal":{"name":"bioRxiv (Cold Spring Harbor Laboratory)","volume":"45 8","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv (Cold Spring Harbor Laboratory)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.11.13.566337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Single-cell transcriptomics (scRNA-seq) is extensively applied in uncovering biological heterogeneity. There are different dimensionality reduction techniques, but it is unclear which method works best in preserving biological information when creating a two-dimensional embedding. Therefore, we implemented cellstruct, which calculates three metrics scores to quantify the global or local biological similarity between a two-dimensional and its corresponding higher-dimensional PCA embeddings at either single-cell or cluster level. These scores pinpoint cell populations with low biological information preservation, in addition to visualizing the cell-cell or cluster-cluster relationships in the PCA embedding. Two study cases illustrate the usefulness of cellstruct in exploratory data analysis.
细胞结构:测量分数以量化两个嵌入之间的生物保存
单细胞转录组学(scRNA-seq)广泛应用于揭示生物异质性。有不同的降维技术,但不清楚哪种方法在创建二维嵌入时能最好地保存生物信息。因此,我们实现了cellstruct,它计算三个度量分数来量化二维及其相应的高维PCA嵌入在单细胞或聚类水平上的全局或局部生物相似性。除了在PCA嵌入中可视化细胞-细胞或簇-簇关系外,这些分数还精确定位了具有低生物信息保存的细胞群。两个研究案例说明了细胞结构在探索性数据分析中的有用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信