Theoretical Study on the Electroreduction of CO2 to α-Olefins by Tandem Catalysis of Polymetallic Phthalocyanine Two-Dimensional Carbon-Rich Conjugated Frameworks (CCFs)
{"title":"Theoretical Study on the Electroreduction of CO2 to α-Olefins by Tandem Catalysis of Polymetallic Phthalocyanine Two-Dimensional Carbon-Rich Conjugated Frameworks (CCFs)","authors":"Jinping Du, Ling Guo","doi":"10.1007/s12678-023-00853-8","DOIUrl":null,"url":null,"abstract":"<div><p>In the carbon dioxide reduction reaction (CO<sub>2</sub>RR), the direct synthesis of unsaturated heavy hydrocarbons such as α-olefins is more attractive for modern society. However, the underlying reaction mechanism remains unclear because the C–C coupling towards α-olefins is difficult to control. Therefore, in order to improve the selectivity of α-olefins, a tandem catalyst is proposed based on CCFs. After detailed screening and analysis, Fe-Ti-Pc-Mo-S-CCFs composed of Fe-Ti-Pc ligand and MoS<sub>4</sub> node is considered to have high selectivity for CO<sub>2</sub>RR and good inhibition of competitive HER, which is attributed to the orbital hybridization mechanism between CO<sub>2</sub> and Fe and Ti. The reaction mechanism and complex intermediates of the synthesis of α-olefins from the CO<sub>2</sub> hydrogenation reaction are systematically investigated, including four pathways. Density functional theory (DFT) simulations indicate that the asymmetric coupling of *CH<sub>2</sub> and *COOH forms *CH<sub>2</sub>COOH, followed by the continuous insertion of CH<sub>2</sub>, leading to the formation of α-olefins. This mechanism is the optimal pathway for CO<sub>2</sub>RR. In addition, the competitiveness of C–C coupling and proton-coupled electron transfer (PCET) reactions are also discussed. The results conclude that C<sub>1</sub>-C<sub>2</sub> and C<sub>1</sub>-C<sub>3</sub> couplings are more advantageous. In this work, the results reveal that Fe-Ti-Pc-Mo-S-CCFs has the stability, high selectivity, and high conductivity, enables CO<sub>2</sub> reduction to a high-value product, and provides a novel possibility for the design of electrocatalysts for CO<sub>2</sub>RR.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":535,"journal":{"name":"Electrocatalysis","volume":"15 1","pages":"52 - 69"},"PeriodicalIF":2.7000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrocatalysis","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s12678-023-00853-8","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In the carbon dioxide reduction reaction (CO2RR), the direct synthesis of unsaturated heavy hydrocarbons such as α-olefins is more attractive for modern society. However, the underlying reaction mechanism remains unclear because the C–C coupling towards α-olefins is difficult to control. Therefore, in order to improve the selectivity of α-olefins, a tandem catalyst is proposed based on CCFs. After detailed screening and analysis, Fe-Ti-Pc-Mo-S-CCFs composed of Fe-Ti-Pc ligand and MoS4 node is considered to have high selectivity for CO2RR and good inhibition of competitive HER, which is attributed to the orbital hybridization mechanism between CO2 and Fe and Ti. The reaction mechanism and complex intermediates of the synthesis of α-olefins from the CO2 hydrogenation reaction are systematically investigated, including four pathways. Density functional theory (DFT) simulations indicate that the asymmetric coupling of *CH2 and *COOH forms *CH2COOH, followed by the continuous insertion of CH2, leading to the formation of α-olefins. This mechanism is the optimal pathway for CO2RR. In addition, the competitiveness of C–C coupling and proton-coupled electron transfer (PCET) reactions are also discussed. The results conclude that C1-C2 and C1-C3 couplings are more advantageous. In this work, the results reveal that Fe-Ti-Pc-Mo-S-CCFs has the stability, high selectivity, and high conductivity, enables CO2 reduction to a high-value product, and provides a novel possibility for the design of electrocatalysts for CO2RR.
期刊介绍:
Electrocatalysis is cross-disciplinary in nature, and attracts the interest of chemists, physicists, biochemists, surface and materials scientists, and engineers. Electrocatalysis provides the unique international forum solely dedicated to the exchange of novel ideas in electrocatalysis for academic, government, and industrial researchers. Quick publication of new results, concepts, and inventions made involving Electrocatalysis stimulates scientific discoveries and breakthroughs, promotes the scientific and engineering concepts that are critical to the development of novel electrochemical technologies.
Electrocatalysis publishes original submissions in the form of letters, research papers, review articles, book reviews, and educational papers. Letters are preliminary reports that communicate new and important findings. Regular research papers are complete reports of new results, and their analysis and discussion. Review articles critically and constructively examine development in areas of electrocatalysis that are of broad interest and importance. Educational papers discuss important concepts whose understanding is vital to advances in theoretical and experimental aspects of electrochemical reactions.