Enhancing force sensing in a squeezed optomechanical system with quantum non-demolition measurement

IF 2.4 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Shi-Lei Chao, Zi-Hao Li, Xin-You Lu
{"title":"Enhancing force sensing in a squeezed optomechanical system with quantum non-demolition measurement","authors":"Shi-Lei Chao, Zi-Hao Li, Xin-You Lu","doi":"10.1088/1572-9494/ad0c4f","DOIUrl":null,"url":null,"abstract":"Abstract A theoretical scheme is proposed to enhance the sensitivity of force sensor with 
quantum non-demolition measurement (QND) in an optomechanical setup assisted by four-tone optical driving
and an optical parametric amplifier (OPA). 
With the help of special drive, the system can be simplified as the typical type of QND for force sensing, 
so that the backaction noise can be evaded to surpass the standard quantum limit. Besides, the added noise can be suppressed 
owing to the modified optical susceptibility resulting from the OPA. 
By introducing two oscillators coupling with two charged bodies respectively,
the signal can be enhanced with the nonlinearity caused by Coulomb interaction, while the noise 
presents an exponential decrease. Moreover, considering the homodyne detection effect, the range of 
system parameters and frequency bands will be broadened.
The present investigation may provide a route toward simultaneously 
evading backaction noise, reducing the mechanical thermal noise, 
and enhancing the external signal, which can be an alternative design for sensitive devices.","PeriodicalId":10641,"journal":{"name":"Communications in Theoretical Physics","volume":"21 23","pages":"0"},"PeriodicalIF":2.4000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Theoretical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1572-9494/ad0c4f","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract A theoretical scheme is proposed to enhance the sensitivity of force sensor with 
quantum non-demolition measurement (QND) in an optomechanical setup assisted by four-tone optical driving
and an optical parametric amplifier (OPA). 
With the help of special drive, the system can be simplified as the typical type of QND for force sensing, 
so that the backaction noise can be evaded to surpass the standard quantum limit. Besides, the added noise can be suppressed 
owing to the modified optical susceptibility resulting from the OPA. 
By introducing two oscillators coupling with two charged bodies respectively,
the signal can be enhanced with the nonlinearity caused by Coulomb interaction, while the noise 
presents an exponential decrease. Moreover, considering the homodyne detection effect, the range of 
system parameters and frequency bands will be broadened.
The present investigation may provide a route toward simultaneously 
evading backaction noise, reducing the mechanical thermal noise, 
and enhancing the external signal, which can be an alternative design for sensitive devices.
用量子不拆测量增强压缩光力学系统的力传感
摘要提出了一种在四音光驱动和光参量放大器(OPA)辅助下,利用量子不拆测(QND)提高力传感器灵敏度的理论方案。在特殊驱动的帮助下,可以将系统简化为力传感的典型QND,从而避免反作用噪声超过标准量子极限。此外,由于OPA改变了光磁化率,增加的噪声可以被抑制。 通过引入两个振荡子分别与两个带电体耦合, 信号可以通过库仑相互作用引起的非线性增强,而噪声 呈指数下降。此外,考虑到纯差检测效果,拓宽了系统参数和频带的范围,为同时规避反作用噪声、降低机械热噪声和增强外部信号提供了一条途径,可作为敏感器件的替代设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Theoretical Physics
Communications in Theoretical Physics 物理-物理:综合
CiteScore
5.20
自引率
3.20%
发文量
6110
审稿时长
4.2 months
期刊介绍: Communications in Theoretical Physics is devoted to reporting important new developments in the area of theoretical physics. Papers cover the fields of: mathematical physics quantum physics and quantum information particle physics and quantum field theory nuclear physics gravitation theory, astrophysics and cosmology atomic, molecular, optics (AMO) and plasma physics, chemical physics statistical physics, soft matter and biophysics condensed matter theory others Certain new interdisciplinary subjects are also incorporated.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信