Exponential Networks, WKB and Topological String

IF 0.9 3区 物理与天体物理 Q2 MATHEMATICS
Alba Grassi, Qianyu Hao, Andrew Neitzke
{"title":"Exponential Networks, WKB and Topological String","authors":"Alba Grassi, Qianyu Hao, Andrew Neitzke","doi":"10.3842/sigma.2023.064","DOIUrl":null,"url":null,"abstract":"We propose a connection between 3d-5d exponential networks and exact WKB for difference equations associated to five dimensional Seiberg-Witten curves, or equivalently, to quantum mirror curves to toric Calabi-Yau threefolds $X$: the singularities in the Borel planes of local solutions to such difference equations correspond to central charges of 3d-5d BPS KK-modes. It follows that there should be distinguished local solutions of the difference equation in each domain of the complement of the exponential network, and these solutions jump at the walls of the network. We verify and explore this picture in two simple examples of 3d-5d systems, corresponding to taking the toric Calabi-Yau $X$ to be either $\\mathbb{C}^3$ or the resolved conifold. We provide the full list of local solutions in each sector of the Borel plane and in each domain of the complement of the exponential network, and find that local solutions in disconnected domains correspond to non-perturbative open topological string amplitudes on $X$ with insertions of branes at different positions of the toric diagram. We also study the Borel summation of the closed refined topological string free energy on $X$ and the corresponding non-perturbative effects, finding that central charges of 5d BPS KK-modes are related to the singularities in the Borel plane.","PeriodicalId":49453,"journal":{"name":"Symmetry Integrability and Geometry-Methods and Applications","volume":"62 1","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symmetry Integrability and Geometry-Methods and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3842/sigma.2023.064","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 9

Abstract

We propose a connection between 3d-5d exponential networks and exact WKB for difference equations associated to five dimensional Seiberg-Witten curves, or equivalently, to quantum mirror curves to toric Calabi-Yau threefolds $X$: the singularities in the Borel planes of local solutions to such difference equations correspond to central charges of 3d-5d BPS KK-modes. It follows that there should be distinguished local solutions of the difference equation in each domain of the complement of the exponential network, and these solutions jump at the walls of the network. We verify and explore this picture in two simple examples of 3d-5d systems, corresponding to taking the toric Calabi-Yau $X$ to be either $\mathbb{C}^3$ or the resolved conifold. We provide the full list of local solutions in each sector of the Borel plane and in each domain of the complement of the exponential network, and find that local solutions in disconnected domains correspond to non-perturbative open topological string amplitudes on $X$ with insertions of branes at different positions of the toric diagram. We also study the Borel summation of the closed refined topological string free energy on $X$ and the corresponding non-perturbative effects, finding that central charges of 5d BPS KK-modes are related to the singularities in the Borel plane.
指数网络,WKB和拓扑串
我们提出了与五维Seiberg-Witten曲线相关的差分方程的3d-5d指数网络和精确WKB之间的联系,或者等效地,与量子镜像曲线到环面Calabi-Yau三倍$X$相关的差分方程:这些差分方程局部解的Borel平面上的奇点对应于3d-5d BPS kk模式的中心电荷。由此可见,在指数网络的补域内,差分方程的每一个域中都存在微分的局部解,并且这些解在网络的壁上跳跃。我们在3d-5d系统的两个简单示例中验证和探索了这一图像,对应于将环面Calabi-Yau $X$取为$\mathbb{C}^3$或解析confold。我们给出了Borel平面的每个扇区和指数网络补的每个域中的局部解的完整列表,并发现在断开域中的局部解对应于在环图的不同位置插入膜的X$上的非摄动开放拓扑弦的振幅。我们还研究了闭合精化拓扑弦在X上自由能的Borel求和和相应的非微扰效应,发现5d BPS kk模式的中心电荷与Borel平面上的奇点有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
87
审稿时长
4-8 weeks
期刊介绍: Scope Geometrical methods in mathematical physics Lie theory and differential equations Classical and quantum integrable systems Algebraic methods in dynamical systems and chaos Exactly and quasi-exactly solvable models Lie groups and algebras, representation theory Orthogonal polynomials and special functions Integrable probability and stochastic processes Quantum algebras, quantum groups and their representations Symplectic, Poisson and noncommutative geometry Algebraic geometry and its applications Quantum field theories and string/gauge theories Statistical physics and condensed matter physics Quantum gravity and cosmology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信