Camera Independent Motion Deblurring in Videos Using Machine Learning

Tyler Welander, Ronald Marsh, Bryce Gruber
{"title":"Camera Independent Motion Deblurring in Videos Using Machine Learning","authors":"Tyler Welander, Ronald Marsh, Bryce Gruber","doi":"10.4236/jilsa.2023.154007","DOIUrl":null,"url":null,"abstract":"In this paper, we will be looking at our efforts to find a novel solution for motion deblurring in videos. In addition, our solution has the requirement of being camera-independent. This means that the solution is fully implemented in software and is not aware of any of the characteristics of the camera. We found a solution by implementing a Convolutional Neural Network-Long Short Term Memory (CNN-LSTM) hybrid model. Our CNN-LSTM is able to deblur video without any knowledge of the camera hardware. This allows it to be implemented on any system that allows the camera to be swapped out with any camera model with any physical characteristics.","PeriodicalId":152996,"journal":{"name":"Journal of Intelligent Learning Systems and Applications","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Learning Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/jilsa.2023.154007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we will be looking at our efforts to find a novel solution for motion deblurring in videos. In addition, our solution has the requirement of being camera-independent. This means that the solution is fully implemented in software and is not aware of any of the characteristics of the camera. We found a solution by implementing a Convolutional Neural Network-Long Short Term Memory (CNN-LSTM) hybrid model. Our CNN-LSTM is able to deblur video without any knowledge of the camera hardware. This allows it to be implemented on any system that allows the camera to be swapped out with any camera model with any physical characteristics.
使用机器学习的视频中的相机独立运动去模糊
在本文中,我们将着眼于我们的努力,为视频中的运动去模糊找到一种新的解决方案。此外,我们的解决方案具有与摄像机无关的要求。这意味着该解决方案完全在软件中实现,并且不知道相机的任何特性。我们通过实现卷积神经网络-长短期记忆(CNN-LSTM)混合模型找到了解决方案。我们的CNN-LSTM能够在不了解相机硬件的情况下消除视频模糊。这使得它可以在任何允许相机与任何物理特性的任何相机模型交换的系统上实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信