John Daugman;Cathryn Downing;Oluwatobi Noah Akande;Oluwakemi Christiana Abikoye
{"title":"Ethnicity and Biometric Uniqueness: Iris Pattern Individuality in a West African Database","authors":"John Daugman;Cathryn Downing;Oluwatobi Noah Akande;Oluwakemi Christiana Abikoye","doi":"10.1109/TBIOM.2023.3327287","DOIUrl":null,"url":null,"abstract":"We conducted more than 1.3 million comparisons of iris patterns encoded from images collected at two Nigerian universities, which constitute the newly available African Human Iris (AFHIRIS) database. The purpose was to discover whether ethnic differences in iris structure and appearance such as the textural feature size, as contrasted with an all-Chinese image database or an American database in which only 1.53% were of African-American heritage, made a material difference for iris discrimination. We measured a reduction in entropy for the AFHIRIS database due to the coarser iris features created by the thick anterior layer of melanocytes, and we found stochastic parameters that accurately model the relevant empirical distributions. Quantile-Quantile analysis revealed that a very small change in operational decision thresholds for the African database would compensate for the reduced entropy and generate the same performance in terms of resistance to False Matches. We conclude that despite demographic difference, individuality can be robustly discerned by comparison of iris patterns in this West African population.","PeriodicalId":73307,"journal":{"name":"IEEE transactions on biometrics, behavior, and identity science","volume":"6 1","pages":"79-86"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on biometrics, behavior, and identity science","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10296482/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We conducted more than 1.3 million comparisons of iris patterns encoded from images collected at two Nigerian universities, which constitute the newly available African Human Iris (AFHIRIS) database. The purpose was to discover whether ethnic differences in iris structure and appearance such as the textural feature size, as contrasted with an all-Chinese image database or an American database in which only 1.53% were of African-American heritage, made a material difference for iris discrimination. We measured a reduction in entropy for the AFHIRIS database due to the coarser iris features created by the thick anterior layer of melanocytes, and we found stochastic parameters that accurately model the relevant empirical distributions. Quantile-Quantile analysis revealed that a very small change in operational decision thresholds for the African database would compensate for the reduced entropy and generate the same performance in terms of resistance to False Matches. We conclude that despite demographic difference, individuality can be robustly discerned by comparison of iris patterns in this West African population.