On the shape of solutions to elliptic equations in possibly non convex planar domains

IF 1.3 4区 数学 Q2 MATHEMATICS, APPLIED
Luca Battaglia, Fabio De Regibus, Massimo Grossi
{"title":"On the shape of solutions to elliptic equations in possibly non convex planar domains","authors":"Luca Battaglia, Fabio De Regibus, Massimo Grossi","doi":"10.3934/dcdss.2023194","DOIUrl":null,"url":null,"abstract":"In this note we prove uniqueness of the critical point for positive solutions of elliptic problems in bounded planar domains: we first examine the Poisson problem - Delta u = f(x,y) finding a geometric condition involving the curvature of the boundary and the normal derivative of f on the boundary to ensure uniqueness of the critical point. In the second part we consider stable solutions of the nonlinear problem -Delta u = f(u) in perturbation of convex domains.","PeriodicalId":48838,"journal":{"name":"Discrete and Continuous Dynamical Systems-Series S","volume":"265 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete and Continuous Dynamical Systems-Series S","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/dcdss.2023194","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this note we prove uniqueness of the critical point for positive solutions of elliptic problems in bounded planar domains: we first examine the Poisson problem - Delta u = f(x,y) finding a geometric condition involving the curvature of the boundary and the normal derivative of f on the boundary to ensure uniqueness of the critical point. In the second part we consider stable solutions of the nonlinear problem -Delta u = f(u) in perturbation of convex domains.
可能非凸平面域上椭圆方程解的形状
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.70
自引率
5.60%
发文量
177
期刊介绍: Series S of Discrete and Continuous Dynamical Systems only publishes theme issues. Each issue is devoted to a specific area of the mathematical, physical and engineering sciences. This area will define a research frontier that is advancing rapidly, often bridging mathematics and sciences. DCDS-S is essential reading for mathematicians, physicists, engineers and other physical scientists. The journal is published bimonthly.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信