Effective Infinitesimals in $\mathbb R$

IF 0.1 Q4 MATHEMATICS
Karel Hrbacek, Mikhail G. Katz
{"title":"Effective Infinitesimals in $\\mathbb R$","authors":"Karel Hrbacek, Mikhail G. Katz","doi":"10.14321/realanalexch.48.2.1671048854","DOIUrl":null,"url":null,"abstract":"We survey the effective foundations for analysis with infinitesimals developed by Hrbacek and Katz in 2021, and detail some applications. Theories SPOT and SCOT are conservative over respectively ZF and ZF+ADC. The range of applications of these theories illustrates the fact that analysis with infinitesimals requires no more choice than traditional analysis. The theory SCOT incorporates in particular all the axioms of Nelson's Radically Elementary Probability Theory, which is therefore conservative over ZF+ADC.","PeriodicalId":44674,"journal":{"name":"Real Analysis Exchange","volume":"57 1","pages":"0"},"PeriodicalIF":0.1000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Real Analysis Exchange","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14321/realanalexch.48.2.1671048854","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We survey the effective foundations for analysis with infinitesimals developed by Hrbacek and Katz in 2021, and detail some applications. Theories SPOT and SCOT are conservative over respectively ZF and ZF+ADC. The range of applications of these theories illustrates the fact that analysis with infinitesimals requires no more choice than traditional analysis. The theory SCOT incorporates in particular all the axioms of Nelson's Radically Elementary Probability Theory, which is therefore conservative over ZF+ADC.
$\mathbb R$中的有效无穷小
我们调查了Hrbacek和Katz在2021年开发的无限小分析的有效基础,并详细介绍了一些应用。SPOT理论和SCOT理论分别对ZF和ZF+ADC具有保守性。这些理论的广泛应用说明了这样一个事实:与传统分析相比,无限小分析并不需要更多的选择。SCOT理论特别地包含了Nelson的根本初等概率论的所有公理,因此在ZF+ADC上是保守的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Real Analysis Exchange
Real Analysis Exchange MATHEMATICS-
CiteScore
0.40
自引率
50.00%
发文量
15
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信