Poisson Limit Distribution for Diffeomorphisms with Weak Hyperbolic Product Structure

IF 0.1 Q4 MATHEMATICS
Jin Hatomoto
{"title":"Poisson Limit Distribution for Diffeomorphisms with Weak Hyperbolic Product Structure","authors":"Jin Hatomoto","doi":"10.14321/realanalexch.48.2.1659596483","DOIUrl":null,"url":null,"abstract":"We study a diffeomorphism which admits a weak hyperbolic product structure region, which is the intersection of two transversal families of weak stable and weak unstable disks, with countably many branches and integrable return times. We show that for such maps the distributions of the number of visits to a ball $B(x, r)$ converges to a Poisson distributions as the radius $r \\to 0$. Applications of our resutls are some partially hyperbolic diffeomorphisms of which restriction on one dimensional unstable direction behaves as Manneville-Pomeau maps.","PeriodicalId":44674,"journal":{"name":"Real Analysis Exchange","volume":"54 1","pages":"0"},"PeriodicalIF":0.1000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Real Analysis Exchange","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14321/realanalexch.48.2.1659596483","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study a diffeomorphism which admits a weak hyperbolic product structure region, which is the intersection of two transversal families of weak stable and weak unstable disks, with countably many branches and integrable return times. We show that for such maps the distributions of the number of visits to a ball $B(x, r)$ converges to a Poisson distributions as the radius $r \to 0$. Applications of our resutls are some partially hyperbolic diffeomorphisms of which restriction on one dimensional unstable direction behaves as Manneville-Pomeau maps.
弱双曲积结构微分同态的泊松极限分布
研究了一类允许弱双曲积结构区域的微分同构,该区域是两个具有可数分支和可积返回时间的弱稳定盘和弱不稳定盘的横族的交集。我们证明了对于这样的映射,访问球的次数的分布$B(x, r)$收敛于半径$r \到0$的泊松分布。我们的结果应用于一些部分双曲微分同态,它们在一维不稳定方向上的限制表现为曼纳维-波默映射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Real Analysis Exchange
Real Analysis Exchange MATHEMATICS-
CiteScore
0.40
自引率
50.00%
发文量
15
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信