Large Sets Avoiding Affine Copies of Infinite Sequences

IF 0.1 Q4 MATHEMATICS
Angel D. Cruz, Chun-Kit Lai, Malabika Pramanik
{"title":"Large Sets Avoiding Affine Copies of Infinite Sequences","authors":"Angel D. Cruz, Chun-Kit Lai, Malabika Pramanik","doi":"10.14321/realanalexch.48.2.1681628520","DOIUrl":null,"url":null,"abstract":"A conjecture of Erdös states that for any infinite set $A \\subseteq \\mathbb R$, there exists a Borel set $E \\subseteq \\mathbb R$ of positive Lebesgue measure that does not contain any non-trivial affine copy of $A$. The conjecture remains open for most fast-decaying sequences, including the geometric sequence $A = \\{2^{-k} : k \\geq 1\\}$. In this article, we consider infinite decreasing sequences $A = \\{a_k: k \\geq 1\\}$ in $\\R$ that converge to zero at a prescribed rate; namely $\\log (a_n/a_{n+1}) = e^{\\varphi(n)} $, where $\\varphi(n)/n\\to 0$ as $n\\to\\infty$. This condition is satisfied by sequences whose logarithm has polynomial decay, and in particular by the geometric sequence. For any such sequence $A$, we construct a Cantor set $K \\subseteq \\mathbb [0,1]$ with measure arbitrarily close to 1, such that the set of Erdös points $\\mathcal{E}\\subseteq K$ has Hasudorff dimension 1.","PeriodicalId":44674,"journal":{"name":"Real Analysis Exchange","volume":"33 1","pages":"0"},"PeriodicalIF":0.1000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Real Analysis Exchange","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14321/realanalexch.48.2.1681628520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A conjecture of Erdös states that for any infinite set $A \subseteq \mathbb R$, there exists a Borel set $E \subseteq \mathbb R$ of positive Lebesgue measure that does not contain any non-trivial affine copy of $A$. The conjecture remains open for most fast-decaying sequences, including the geometric sequence $A = \{2^{-k} : k \geq 1\}$. In this article, we consider infinite decreasing sequences $A = \{a_k: k \geq 1\}$ in $\R$ that converge to zero at a prescribed rate; namely $\log (a_n/a_{n+1}) = e^{\varphi(n)} $, where $\varphi(n)/n\to 0$ as $n\to\infty$. This condition is satisfied by sequences whose logarithm has polynomial decay, and in particular by the geometric sequence. For any such sequence $A$, we construct a Cantor set $K \subseteq \mathbb [0,1]$ with measure arbitrarily close to 1, such that the set of Erdös points $\mathcal{E}\subseteq K$ has Hasudorff dimension 1.
避免无限序列仿射副本的大集合
Erdös的一个猜想表明,对于任意无限集$A \subseteq \mathbb R$,存在一个具有正勒贝格测度的Borel集$E \subseteq \mathbb R$,它不包含$A$的任何非平凡仿射副本。这个猜想仍然适用于大多数快速衰减序列,包括几何序列$A = \{2^{-k} : k \geq 1\}$。在本文中,我们考虑无穷递减序列$A = \{a_k: k \geq 1\}$在$\R$中以规定的速率收敛于零;即$\log (a_n/a_{n+1}) = e^{\varphi(n)} $,其中$\varphi(n)/n\to 0$表示$n\to\infty$。对于对数有多项式衰减的数列,特别是几何数列,都满足这个条件。对于任意这样的序列$A$,我们构造一个测度任意接近于1的Cantor集$K \subseteq \mathbb [0,1]$,使得Erdös点$\mathcal{E}\subseteq K$的集合具有1的Hasudorff维数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Real Analysis Exchange
Real Analysis Exchange MATHEMATICS-
CiteScore
0.40
自引率
50.00%
发文量
15
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信