Probabilistic estimation of the algebraic degree of Boolean functions

Ana Sălăgean, Percy Reyes-Paredes
{"title":"Probabilistic estimation of the algebraic degree of Boolean functions","authors":"Ana Sălăgean, Percy Reyes-Paredes","doi":"10.1007/s12095-023-00660-4","DOIUrl":null,"url":null,"abstract":"Abstract The algebraic degree is an important parameter of Boolean functions used in cryptography. When a function in a large number of variables is not given explicitly in algebraic normal form, it is usually not feasible to compute its degree, so we need to estimate it. We propose a probabilistic test for deciding whether the algebraic degree of a Boolean function f is below a certain value k . If the degree is indeed below k , then f will always pass the test, otherwise f will fail each instance of the test with a probability $$\\textrm{dt}_k(f)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msub> <mml:mtext>dt</mml:mtext> <mml:mi>k</mml:mi> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>f</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> , which is closely related to the average number of monomials of degree k of the polynomials which are affine equivalent to f . The test has a good accuracy only if this probability $$\\textrm{dt}_k(f)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msub> <mml:mtext>dt</mml:mtext> <mml:mi>k</mml:mi> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>f</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> of failing the test is not too small. We initiate the study of $$\\textrm{dt}_k(f)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msub> <mml:mtext>dt</mml:mtext> <mml:mi>k</mml:mi> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>f</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> by showing that in the particular case when the degree of f is actually equal to k , the probability will be in the interval (0.288788, 0.5], and therefore a small number of runs of the test will be sufficient to give, with very high probability, the correct answer. Exact values of $$\\textrm{dt}_k(f)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msub> <mml:mtext>dt</mml:mtext> <mml:mi>k</mml:mi> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>f</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> for all the polynomials in 8 variables were computed using the representatives listed by Hou and by Langevin and Leander.","PeriodicalId":10788,"journal":{"name":"Cryptography and Communications","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cryptography and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12095-023-00660-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The algebraic degree is an important parameter of Boolean functions used in cryptography. When a function in a large number of variables is not given explicitly in algebraic normal form, it is usually not feasible to compute its degree, so we need to estimate it. We propose a probabilistic test for deciding whether the algebraic degree of a Boolean function f is below a certain value k . If the degree is indeed below k , then f will always pass the test, otherwise f will fail each instance of the test with a probability $$\textrm{dt}_k(f)$$ dt k ( f ) , which is closely related to the average number of monomials of degree k of the polynomials which are affine equivalent to f . The test has a good accuracy only if this probability $$\textrm{dt}_k(f)$$ dt k ( f ) of failing the test is not too small. We initiate the study of $$\textrm{dt}_k(f)$$ dt k ( f ) by showing that in the particular case when the degree of f is actually equal to k , the probability will be in the interval (0.288788, 0.5], and therefore a small number of runs of the test will be sufficient to give, with very high probability, the correct answer. Exact values of $$\textrm{dt}_k(f)$$ dt k ( f ) for all the polynomials in 8 variables were computed using the representatives listed by Hou and by Langevin and Leander.

Abstract Image

布尔函数代数度的概率估计
代数度是密码学中布尔函数的一个重要参数。当含有大量变量的函数没有以代数范式显式给出时,通常无法计算其次数,因此需要对其进行估计。我们提出了一个判别布尔函数f的代数度是否低于某一值k的概率检验。如果阶数确实低于k,则f总能通过测试,否则f每次测试失败的概率为$$\textrm{dt}_k(f)$$ dt k (f),这与f的仿射等价多项式的k阶单项式的平均个数密切相关。只有当测试失败的概率$$\textrm{dt}_k(f)$$ dt k (f)不太小时,测试才具有良好的准确性。我们开始研究$$\textrm{dt}_k(f)$$ dt k (f),通过表明在f的度实际上等于k的特殊情况下,概率将在(0.288788,0.5)区间内,因此少量的测试运行将足以以非常高的概率给出正确答案。使用Hou和Langevin和Leander列出的代表,计算8个变量中所有多项式的精确值$$\textrm{dt}_k(f)$$ dt k (f)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信