A problem of Erdős–Graham–Granville–Selfridge on integral points on hyperelliptic curves

IF 0.6 3区 数学 Q3 MATHEMATICS
HUNG M. BUI, KYLE PRATT, ALEXANDRU ZAHARESCU
{"title":"A problem of Erdős–Graham–Granville–Selfridge on integral points on hyperelliptic curves","authors":"HUNG M. BUI, KYLE PRATT, ALEXANDRU ZAHARESCU","doi":"10.1017/s0305004123000488","DOIUrl":null,"url":null,"abstract":"Abstract Erdős, Graham and Selfridge considered, for each positive integer n , the least value of $t_n$ so that the integers $n+1, n+2, \\dots, n+t_n $ contain a subset the product of whose members with n is a square. An open problem posed by Granville concerns the size of $t_n$ , under the assumption of the ABC conjecture. We establish some results on the distribution of $t_n$ , and in the process solve Granville’s problem unconditionally.","PeriodicalId":18320,"journal":{"name":"Mathematical Proceedings of the Cambridge Philosophical Society","volume":"100 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Proceedings of the Cambridge Philosophical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s0305004123000488","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Erdős, Graham and Selfridge considered, for each positive integer n , the least value of $t_n$ so that the integers $n+1, n+2, \dots, n+t_n $ contain a subset the product of whose members with n is a square. An open problem posed by Granville concerns the size of $t_n$ , under the assumption of the ABC conjecture. We establish some results on the distribution of $t_n$ , and in the process solve Granville’s problem unconditionally.
超椭圆曲线上积分点的Erdős-Graham-Granville-Selfridge问题
摘要Erdős, Graham和Selfridge考虑了对于每一个正整数n, $t_n$的最小值,使得整数$n+1, n+2, \dots, n+t_n $包含一个子集,其与n的成员的乘积是平方。在ABC猜想的假设下,Granville提出了一个关于t_n的大小的开放问题。建立了t_n分布的一些结果,并在此过程中无条件地解决了Granville问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
39
审稿时长
6-12 weeks
期刊介绍: Papers which advance knowledge of mathematics, either pure or applied, will be considered by the Editorial Committee. The work must be original and not submitted to another journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信