Optimal Embedded and Enclosing Isosceles Triangles

IF 0.6 4区 计算机科学 Q4 COMPUTER SCIENCE, THEORY & METHODS
Áron Ambrus, Mónika Csikós, Gergely Kiss, János Pach, Gábor Somlai
{"title":"Optimal Embedded and Enclosing Isosceles Triangles","authors":"Áron Ambrus, Mónika Csikós, Gergely Kiss, János Pach, Gábor Somlai","doi":"10.1142/s012905412342008x","DOIUrl":null,"url":null,"abstract":"Given a triangle [Formula: see text], we study the problem of determining the smallest enclosing and largest embedded isosceles triangles of [Formula: see text] with respect to area and perimeter. This problem was initially posed by Nandakumar [17, 22] and was first studied by Kiss, Pach, and Somlai [13], who showed that if [Formula: see text] is the smallest area isosceles triangle containing [Formula: see text], then [Formula: see text] and [Formula: see text] share a side and an angle. In the present paper, we prove that for any triangle [Formula: see text], every maximum area isosceles triangle embedded in [Formula: see text] and every maximum perimeter isosceles triangle embedded in [Formula: see text] shares a side and an angle with [Formula: see text]. Somewhat surprisingly, the case of minimum perimeter enclosing triangles is different: there are infinite families of triangles [Formula: see text] whose minimum perimeter isosceles containers do not share a side and an angle with [Formula: see text].","PeriodicalId":50323,"journal":{"name":"International Journal of Foundations of Computer Science","volume":"26 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s012905412342008x","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Given a triangle [Formula: see text], we study the problem of determining the smallest enclosing and largest embedded isosceles triangles of [Formula: see text] with respect to area and perimeter. This problem was initially posed by Nandakumar [17, 22] and was first studied by Kiss, Pach, and Somlai [13], who showed that if [Formula: see text] is the smallest area isosceles triangle containing [Formula: see text], then [Formula: see text] and [Formula: see text] share a side and an angle. In the present paper, we prove that for any triangle [Formula: see text], every maximum area isosceles triangle embedded in [Formula: see text] and every maximum perimeter isosceles triangle embedded in [Formula: see text] shares a side and an angle with [Formula: see text]. Somewhat surprisingly, the case of minimum perimeter enclosing triangles is different: there are infinite families of triangles [Formula: see text] whose minimum perimeter isosceles containers do not share a side and an angle with [Formula: see text].
最佳嵌入和包围等腰三角形
给定一个三角形[公式:见文],我们研究了在面积和周长方面确定[公式:见文]的最小包围三角形和最大嵌入等腰三角形的问题。这个问题最初由Nandakumar提出[17,22],Kiss, Pach和Somlai[13]首先进行了研究,他们表明,如果[公式:见文]是包含[公式:见文]的最小面积等腰三角形,那么[公式:见文]和[公式:见文]共用一条边和一个角。本文证明了对于任意三角形[公式:见文],嵌在[公式:见文]中的每个最大面积等腰三角形和嵌在[公式:见文]中的每个最大周长等腰三角形与[公式:见文]共用一条边和一个角。令人惊讶的是,最小周长包围三角形的情况是不同的:有无限的三角形族[公式:见文本],其最小周长等腰容器不与[公式:见文本]共享一条边和一个角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Foundations of Computer Science
International Journal of Foundations of Computer Science 工程技术-计算机:理论方法
CiteScore
1.60
自引率
12.50%
发文量
63
审稿时长
3 months
期刊介绍: The International Journal of Foundations of Computer Science is a bimonthly journal that publishes articles which contribute new theoretical results in all areas of the foundations of computer science. The theoretical and mathematical aspects covered include: - Algebraic theory of computing and formal systems - Algorithm and system implementation issues - Approximation, probabilistic, and randomized algorithms - Automata and formal languages - Automated deduction - Combinatorics and graph theory - Complexity theory - Computational biology and bioinformatics - Cryptography - Database theory - Data structures - Design and analysis of algorithms - DNA computing - Foundations of computer security - Foundations of high-performance computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信