Engineering, Structural Materials and Biomaterials: A Review of Sustainable Engineering Using Advanced Biomaterials

Deageon Kim, Dongoun Lee
{"title":"Engineering, Structural Materials and Biomaterials: A Review of Sustainable Engineering Using Advanced Biomaterials","authors":"Deageon Kim, Dongoun Lee","doi":"10.53759/7669/jmc202303046","DOIUrl":null,"url":null,"abstract":"This paper introduces the state-of-the-art biomaterials that may be used to build in a way that is both environmentally friendly and long-term. Concrete, polymers, admixtures, asphalt, and soils are all examples of these materials. It is only because of natural selection that biomaterials may have desirable characteristics that would otherwise be impossible. They are known for characteristics that cannot be replicated in a laboratory setting. These characteristics develop throughout time and by natural means. Biomaterials' naturally occurring characteristics are ideal for meeting the demands of the building industry. Biomaterials having negligible or very negligible linear coefficients of thermal expansion may be utilized in different building applications. They aid in the reduction of internal strains because to their resistance to any change in length brought on by variations in temperature. Biomaterials have various benefits over synthetic materials, including lower production costs and less of an impact on the environment. Use of biodegradable materials may help alleviate the environmental problem caused by the dumping of synthetics. Cracks in the concrete are patched by the live bacteria inside it, making the material stronger.","PeriodicalId":91709,"journal":{"name":"International journal of machine learning and computing","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of machine learning and computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53759/7669/jmc202303046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces the state-of-the-art biomaterials that may be used to build in a way that is both environmentally friendly and long-term. Concrete, polymers, admixtures, asphalt, and soils are all examples of these materials. It is only because of natural selection that biomaterials may have desirable characteristics that would otherwise be impossible. They are known for characteristics that cannot be replicated in a laboratory setting. These characteristics develop throughout time and by natural means. Biomaterials' naturally occurring characteristics are ideal for meeting the demands of the building industry. Biomaterials having negligible or very negligible linear coefficients of thermal expansion may be utilized in different building applications. They aid in the reduction of internal strains because to their resistance to any change in length brought on by variations in temperature. Biomaterials have various benefits over synthetic materials, including lower production costs and less of an impact on the environment. Use of biodegradable materials may help alleviate the environmental problem caused by the dumping of synthetics. Cracks in the concrete are patched by the live bacteria inside it, making the material stronger.
工程、结构材料和生物材料:应用先进生物材料的可持续工程综述
本文介绍了最先进的生物材料,可用于以既环保又长期的方式建造。混凝土、聚合物、外加剂、沥青和土壤都是这些材料的例子。正是由于自然选择,生物材料才可能具有原本不可能具有的理想特性。它们以无法在实验室环境中复制的特征而闻名。这些特征随着时间和自然的方式而发展。生物材料的天然特性是满足建筑行业需求的理想选择。具有可忽略不计或非常可忽略不计的热膨胀线性系数的生物材料可用于不同的建筑应用。它们有助于减少内部应变,因为它们对温度变化引起的长度变化具有抵抗力。与合成材料相比,生物材料有很多优点,包括生产成本更低,对环境的影响更小。使用生物可降解材料可以帮助缓解因合成材料的倾倒而造成的环境问题。混凝土的裂缝被里面的活细菌修补,使材料更坚固。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信