A Fitted Numerical Approach for Singularly Perturbed Two-Parameter Parabolic Problem with Time Delay

IF 0.9 Q3 MATHEMATICS, APPLIED
Imiru Takele Daba, Wondwosen Gebeyaw Melesse, Guta Demisu Kebede
{"title":"A Fitted Numerical Approach for Singularly Perturbed Two-Parameter Parabolic Problem with Time Delay","authors":"Imiru Takele Daba, Wondwosen Gebeyaw Melesse, Guta Demisu Kebede","doi":"10.1155/2023/6496354","DOIUrl":null,"url":null,"abstract":"This paper is aimed at constructing and analyzing a fitted approach for singularly perturbed time delay parabolic problems with two small parameters. The proposed computational scheme comprises the implicit Euler and especially finite difference method for the time and space variable discretization, respectively, on uniform step size. The stability and convergence analysis of the method is provided and is first-order parameter uniform convergent. Further, the numerical results depict that the present method is more convergent than some methods available in the literature.","PeriodicalId":100308,"journal":{"name":"Computational and Mathematical Methods","volume":"17 9","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Mathematical Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/6496354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is aimed at constructing and analyzing a fitted approach for singularly perturbed time delay parabolic problems with two small parameters. The proposed computational scheme comprises the implicit Euler and especially finite difference method for the time and space variable discretization, respectively, on uniform step size. The stability and convergence analysis of the method is provided and is first-order parameter uniform convergent. Further, the numerical results depict that the present method is more convergent than some methods available in the literature.
一类时滞奇摄动双参数抛物型问题的拟合数值方法
本文的目的是构造和分析两个小参数奇摄动时滞抛物型问题的一种拟合方法。所提出的计算方案包括隐式欧拉法和有限差分法,分别用于均匀步长下的时间变量离散和空间变量离散。给出了该方法的稳定性和收敛性分析,证明该方法是一阶参数一致收敛的。此外,数值结果表明,该方法比现有的一些方法收敛性更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信