{"title":"Control problems on infinite horizon subject to time-dependent pure state constraints","authors":"Vincenzo Basco","doi":"10.1007/s00498-023-00372-3","DOIUrl":null,"url":null,"abstract":"In the last decades, control problems with infinite horizons and discount factors have become increasingly central not only for economics but also for applications in artificial intelligence and machine learning. The strong links between reinforcement learning and control theory have led to major efforts toward the development of algorithms to learn how to solve constrained control problems. In particular, discount plays a role in addressing the challenges that come with models that have unbounded disturbances. Although algorithms have been extensively explored, few results take into account time-dependent state constraints, which are imposed in most real-world control applications. For this purpose, here we investigate feasibility and sufficient conditions for Lipschitz regularity of the value function for a class of discounted infinite horizon optimal control problems subject to time-dependent constraints. We focus on problems with data that allow nonautonomous dynamics, and Lagrangian and state constraints that can be unbounded with possibly nonsmooth boundaries.","PeriodicalId":51123,"journal":{"name":"Mathematics of Control Signals and Systems","volume":"72 3","pages":"0"},"PeriodicalIF":1.8000,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of Control Signals and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00498-023-00372-3","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In the last decades, control problems with infinite horizons and discount factors have become increasingly central not only for economics but also for applications in artificial intelligence and machine learning. The strong links between reinforcement learning and control theory have led to major efforts toward the development of algorithms to learn how to solve constrained control problems. In particular, discount plays a role in addressing the challenges that come with models that have unbounded disturbances. Although algorithms have been extensively explored, few results take into account time-dependent state constraints, which are imposed in most real-world control applications. For this purpose, here we investigate feasibility and sufficient conditions for Lipschitz regularity of the value function for a class of discounted infinite horizon optimal control problems subject to time-dependent constraints. We focus on problems with data that allow nonautonomous dynamics, and Lagrangian and state constraints that can be unbounded with possibly nonsmooth boundaries.
期刊介绍:
Mathematics of Control, Signals, and Systems (MCSS) is an international journal devoted to mathematical control and system theory, including system theoretic aspects of signal processing.
Its unique feature is its focus on mathematical system theory; it concentrates on the mathematical theory of systems with inputs and/or outputs and dynamics that are typically described by deterministic or stochastic ordinary or partial differential equations, differential algebraic equations or difference equations.
Potential topics include, but are not limited to controllability, observability, and realization theory, stability theory of nonlinear systems, system identification, mathematical aspects of switched, hybrid, networked, and stochastic systems, and system theoretic aspects of optimal control and other controller design techniques. Application oriented papers are welcome if they contain a significant theoretical contribution.