Elliptic Ruijsenaars difference operators, symmetric polynomials, and Wess–Zumino–Witten fusion rings

IF 1.2 2区 数学 Q1 MATHEMATICS
van Diejen, Jan Felipe, Görbe, Tamás
{"title":"Elliptic Ruijsenaars difference operators, symmetric polynomials, and Wess–Zumino–Witten fusion rings","authors":"van Diejen, Jan Felipe, Görbe, Tamás","doi":"10.1007/s00029-023-00883-6","DOIUrl":null,"url":null,"abstract":"The fusion ring for $\\widehat{\\mathfrak{su}}(n)_m$ Wess-Zumino-Witten conformal field theories is known to be isomorphic to a factor ring of the ring of symmetric polynomials presented by Schur polynomials. We introduce a deformation of this factor ring associated with eigenpolynomials for the elliptic Ruijsenaars difference operators. The corresponding Littlewood-Richardson coefficients are governed by a Pieri rule stemming from the eigenvalue equation. The orthogonality of the eigenbasis gives rise to an analog of the Verlinde formula. In the trigonometric limit, our construction recovers the refined $\\widehat{\\mathfrak{su}}(n)_m$ Wess-Zumino-Witten fusion ring associated with the Macdonald polynomials.","PeriodicalId":49551,"journal":{"name":"Selecta Mathematica-New Series","volume":"11 5","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Selecta Mathematica-New Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00029-023-00883-6","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

The fusion ring for $\widehat{\mathfrak{su}}(n)_m$ Wess-Zumino-Witten conformal field theories is known to be isomorphic to a factor ring of the ring of symmetric polynomials presented by Schur polynomials. We introduce a deformation of this factor ring associated with eigenpolynomials for the elliptic Ruijsenaars difference operators. The corresponding Littlewood-Richardson coefficients are governed by a Pieri rule stemming from the eigenvalue equation. The orthogonality of the eigenbasis gives rise to an analog of the Verlinde formula. In the trigonometric limit, our construction recovers the refined $\widehat{\mathfrak{su}}(n)_m$ Wess-Zumino-Witten fusion ring associated with the Macdonald polynomials.
椭圆rujsenaars差分算子,对称多项式和Wess-Zumino-Witten融合环
已知$\widehat{\mathfrak{su}}(n)_m$ Wess-Zumino-Witten共形场论的融合环与由Schur多项式表示的对称多项式环的因子环同构。我们引入了椭圆型rujsenaars差分算子与特征多项式相关的因子环的一种变形。相应的Littlewood-Richardson系数由源于特征值方程的Pieri规则控制。特征基的正交性产生了Verlinde公式的类比。在三角极限下,我们的构造恢复了与Macdonald多项式相关的精炼的$\widehat{\mathfrak{su}}(n)_m$ wss - zumino - witten融合环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
7.10%
发文量
68
审稿时长
>12 weeks
期刊介绍: Selecta Mathematica, New Series is a peer-reviewed journal addressed to a wide mathematical audience. It accepts well-written high quality papers in all areas of pure mathematics, and selected areas of applied mathematics. The journal especially encourages submission of papers which have the potential of opening new perspectives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信