{"title":"Reactive transport modeling of scale precipitation and deposition during incompatible water injection in carbonate reservoirs","authors":"A. Shojaee, S. Kord, R. Miri, O. Mohammadzadeh","doi":"10.1007/s13202-023-01715-1","DOIUrl":null,"url":null,"abstract":"Abstract Seawater injection is an efficient enhanced oil recovery (EOR) method that capitalizes on the chemical composition differences between the injecting seawater and in-situ formation water, which leads to physicochemical interactions between the rock and fluids. These rock and fluid interactions result in changes of rock wettability and subsequent improved microscopic sweep efficiency. However, the ion imbalance resulting from seawater injection and its incompatibility with the in-situ formation water may interfere with the rock and fluids equilibrium state, causing scale precipitation and subsequent deposition which can negatively impact rock quality, well productivity and reservoir performance. In this study, an accurate, robust, and general approach is presented by coupling a geochemical module with a compositional two-phase fluid flow model to handle reactive transport in porous media. The proposed coupled model, so-called ad-scale model, is capable of simulating carbonate rock dissolution and sulfate scale formation/deposition for evaluating reservoir performance under incompatible water injection. The model predictions were validated using experimental data. This model was also utilized to predict water injection rate into a carbonate formation. It was obtained that both the reacting and non-reacting component profiles were accurately predicted using the proposed coupled model. The water injection rate prediction was also validated and showed high accuracy with absolute error and coefficient of determination values of 9.02% and 0.99, respectively. In addition, a sensitivity analysis was performed on water composition, which showed a strong dependence of reservoir and well performance on water composition. Graphical abstract This diagram elucidates what exactly happens during incompatible water injection in the mixing zones near the injection well (right half of the figure) or production well (left half of the figure) where most of the geochemical phenomena occur.","PeriodicalId":16723,"journal":{"name":"Journal of Petroleum Exploration and Production Technology","volume":"58 1-2","pages":"0"},"PeriodicalIF":2.4000,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Petroleum Exploration and Production Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13202-023-01715-1","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Seawater injection is an efficient enhanced oil recovery (EOR) method that capitalizes on the chemical composition differences between the injecting seawater and in-situ formation water, which leads to physicochemical interactions between the rock and fluids. These rock and fluid interactions result in changes of rock wettability and subsequent improved microscopic sweep efficiency. However, the ion imbalance resulting from seawater injection and its incompatibility with the in-situ formation water may interfere with the rock and fluids equilibrium state, causing scale precipitation and subsequent deposition which can negatively impact rock quality, well productivity and reservoir performance. In this study, an accurate, robust, and general approach is presented by coupling a geochemical module with a compositional two-phase fluid flow model to handle reactive transport in porous media. The proposed coupled model, so-called ad-scale model, is capable of simulating carbonate rock dissolution and sulfate scale formation/deposition for evaluating reservoir performance under incompatible water injection. The model predictions were validated using experimental data. This model was also utilized to predict water injection rate into a carbonate formation. It was obtained that both the reacting and non-reacting component profiles were accurately predicted using the proposed coupled model. The water injection rate prediction was also validated and showed high accuracy with absolute error and coefficient of determination values of 9.02% and 0.99, respectively. In addition, a sensitivity analysis was performed on water composition, which showed a strong dependence of reservoir and well performance on water composition. Graphical abstract This diagram elucidates what exactly happens during incompatible water injection in the mixing zones near the injection well (right half of the figure) or production well (left half of the figure) where most of the geochemical phenomena occur.
期刊介绍:
The Journal of Petroleum Exploration and Production Technology is an international open access journal that publishes original and review articles as well as book reviews on leading edge studies in the field of petroleum engineering, petroleum geology and exploration geophysics and the implementation of related technologies to the development and management of oil and gas reservoirs from their discovery through their entire production cycle.
Focusing on:
Reservoir characterization and modeling
Unconventional oil and gas reservoirs
Geophysics: Acquisition and near surface
Geophysics Modeling and Imaging
Geophysics: Interpretation
Geophysics: Processing
Production Engineering
Formation Evaluation
Reservoir Management
Petroleum Geology
Enhanced Recovery
Geomechanics
Drilling
Completions
The Journal of Petroleum Exploration and Production Technology is committed to upholding the integrity of the scientific record. As a member of the Committee on Publication Ethics (COPE) the journal will follow the COPE guidelines on how to deal with potential acts of misconduct. Authors should refrain from misrepresenting research results which could damage the trust in the journal and ultimately the entire scientific endeavor. Maintaining integrity of the research and its presentation can be achieved by following the rules of good scientific practice as detailed here: https://www.springer.com/us/editorial-policies