Predicting the risk of breast cancer recurrence and metastasis based on miRNA expression

IF 2.4 3区 生物学 Q3 BIOCHEMICAL RESEARCH METHODS
Yaping Lv, Yanfeng Wang, Yumeng Zhang, Shuzhen Chen, Yuhua Yao
{"title":"Predicting the risk of breast cancer recurrence and metastasis based on miRNA expression","authors":"Yaping Lv, Yanfeng Wang, Yumeng Zhang, Shuzhen Chen, Yuhua Yao","doi":"10.2174/1574893618666230914105741","DOIUrl":null,"url":null,"abstract":"Background: Even after surgery, breast cancer patients still suffer from recurrence and metastasis. Thus, it is critical to predict accurately the risk of recurrence and metastasis for individual patients, which can help determine the appropriate adjuvant therapy. Methods: The purpose of this study is to investigate and compare the performance of several categories of molecular biomarkers, i.e., microRNA (miRNA), long non-coding RNA (lncRNA), messenger RNA (mRNA), and copy number variation (CNV), in predicting the risk of breast cancer recurrence and metastasis. First, the molecular data (miRNA, lncRNA, mRNA, and CNV) of 483 breast cancer patients were downloaded from the Cancer Genome Atlas, which were then randomly divided into the training and test sets with a ratio of 7:3. Second, the feature selection process was applied by univariate Cox and multivariate Cox variance analysis on the training set (e.g., 15 miRNAs). According to the selected features (e.g., 15 miRNAs), a random forest classifier and several other classification methods were established according to the label of recurrence and metastasis. Finally, the performances of the classification models were compared and evaluated on the test set. Results: The area under the ROC curve was 0.70 for miRNA, better than those using other biomarkers. Conclusion: These results indicated that miRNA has important guiding significance in predicting recurrence and metastasis of breast cancer.","PeriodicalId":10801,"journal":{"name":"Current Bioinformatics","volume":"85 1","pages":"0"},"PeriodicalIF":2.4000,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1574893618666230914105741","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Even after surgery, breast cancer patients still suffer from recurrence and metastasis. Thus, it is critical to predict accurately the risk of recurrence and metastasis for individual patients, which can help determine the appropriate adjuvant therapy. Methods: The purpose of this study is to investigate and compare the performance of several categories of molecular biomarkers, i.e., microRNA (miRNA), long non-coding RNA (lncRNA), messenger RNA (mRNA), and copy number variation (CNV), in predicting the risk of breast cancer recurrence and metastasis. First, the molecular data (miRNA, lncRNA, mRNA, and CNV) of 483 breast cancer patients were downloaded from the Cancer Genome Atlas, which were then randomly divided into the training and test sets with a ratio of 7:3. Second, the feature selection process was applied by univariate Cox and multivariate Cox variance analysis on the training set (e.g., 15 miRNAs). According to the selected features (e.g., 15 miRNAs), a random forest classifier and several other classification methods were established according to the label of recurrence and metastasis. Finally, the performances of the classification models were compared and evaluated on the test set. Results: The area under the ROC curve was 0.70 for miRNA, better than those using other biomarkers. Conclusion: These results indicated that miRNA has important guiding significance in predicting recurrence and metastasis of breast cancer.
基于miRNA表达预测乳腺癌复发和转移风险
背景:乳腺癌患者在手术后仍有复发和转移的危险。因此,准确预测个体患者复发和转移的风险至关重要,这有助于确定合适的辅助治疗。方法:本研究旨在探讨并比较microRNA (miRNA)、长链非编码RNA (lncRNA)、信使RNA (mRNA)、拷贝数变异(CNV)等几类分子生物标志物对乳腺癌复发转移风险的预测作用。首先从cancer Genome Atlas中下载483例乳腺癌患者的分子数据(miRNA、lncRNA、mRNA、CNV),按7:3的比例随机分为训练组和测试组。其次,对训练集(如15个mirna)进行单因素Cox和多因素Cox方差分析,进行特征选择过程。根据选择的特征(如15个mirna),根据复发和转移的标记建立随机森林分类器和其他几种分类方法。最后,在测试集上对分类模型的性能进行了比较和评价。结果:miRNA的ROC曲线下面积为0.70,优于其他生物标志物。结论:上述结果提示miRNA在预测乳腺癌复发转移方面具有重要的指导意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Bioinformatics
Current Bioinformatics 生物-生化研究方法
CiteScore
6.60
自引率
2.50%
发文量
77
审稿时长
>12 weeks
期刊介绍: Current Bioinformatics aims to publish all the latest and outstanding developments in bioinformatics. Each issue contains a series of timely, in-depth/mini-reviews, research papers and guest edited thematic issues written by leaders in the field, covering a wide range of the integration of biology with computer and information science. The journal focuses on advances in computational molecular/structural biology, encompassing areas such as computing in biomedicine and genomics, computational proteomics and systems biology, and metabolic pathway engineering. Developments in these fields have direct implications on key issues related to health care, medicine, genetic disorders, development of agricultural products, renewable energy, environmental protection, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信